A priori bounds and existence of non-negative solutions to a quasi-linear Schrödinger equation involving p-Laplacian

被引:0
作者
Zhengmao Chen
机构
[1] Guangzhou University,School of Mathematics and Information Science
来源
Annals of Functional Analysis | 2023年 / 14卷
关键词
Quasi-linear Schrödinger equations; Non-negative solutions; The theory of topological degree; A priori bounds; -Laplacian; 35J10; 35J62; 35B45; 35B44; 55M25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we focus on the a priori bounds and existence of non-negative solutions to the following quasi-linear-Schrödinger equation with p-Laplacian, 0.1-Δpu-1(1+α)p-1(Δp|u|1+α)|u|α-1u=|u|q-1u+h(x,u)x∈Ω,u>0x∈Ω,u=0x∈∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _pu-\frac{1}{(1+\alpha )^{p-1}} (\Delta _p|u|^{1+\alpha })|u|^{\alpha -1}u=|u|^{q-1}u+h(x,u) &{}\quad x\in \Omega , \\ u>0 &{}\quad x\in \Omega ,\\ u=0 &{}\quad x\in \partial \Omega , \end{array} \right. \end{aligned}$$\end{document}where Δpu=div(|∇u|p-2∇u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _pu=\text {div}(|\nabla u|^{p-2}\nabla u),$$\end{document}Ω⊆Rn(n≥3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq {\mathbb {R}}^n(n\ge 3)$$\end{document} is a bounded smooth domain, p∗=npn-p,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^*=\frac{np}{n-p},$$\end{document}q∈(pα+p-1,p∗α+p∗-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (p\alpha +p-1,p^*\alpha +p^*-1)$$\end{document} and 0≤α<min{q,q+1-pp-1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <\min \{q,\frac{q+1-p}{p-1}\}.$$\end{document} Under suitable conditions of h,  we prove the existence of non-negative solutions to problem (0.1) via the theory of topological degree whose crucial factor is the a priori bounds of solutions to an auxiliary problem. We employ the well-known blow-up argument to get the a priori bounds of solutions. It is worth mentioning that the main result of the present paper devotes to getting new result on the nonlinear Schrödinger equations with p-Laplacian.
引用
收藏
相关论文
共 44 条
[1]  
Alves CO(2015)Soliton solutions for a class of quasilinear Schrödinger equations with a parameter J. Differ. Equ. 259 318-343
[2]  
Wang Y(1990)Nonlinear electromagnetic-spin waves Phys. Rep. 189 165-223
[3]  
Shen Y(2016)Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations J. Differ. Equ. 260 1228-1262
[4]  
Bass FG(1983) local regularity of weak solutions of degenerate elliptic equations Nonlinear Anal. Theory Methods Appl. 7 827-850
[5]  
Nasonov NN(1982)A new proof of local J. Differ. Equ. 45 356-373
[6]  
Deng Y(1982) regularity for solutions of certain degenerate elliptic p.d.e J. Math. Pures Appl. (9) 61 41-63
[7]  
Peng S(2001)A priori estimates and existence of positive solutions of semilinear elliptic equations Commun. Partial Differ. Equ. 26 2305-2321
[8]  
Yan S(1981)A priori bounds for positive solutions of a nonvariational elliptic system Commun. Partial Differ. Equ. 6 883-901
[9]  
DiBenedetto E(1980)A priori bounds for positive solutions of nonlinear elliptic equations Z. Phys. B 37 83-87
[10]  
Evans LC(1990)A general method for the solution of nonlinear soliton and kink Schrödinger equations Phys. Rep. 194 117-238