On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs

被引:0
作者
Yaser Alizadeh
Sandi Klavžar
机构
[1] Hakim Sabzevari University,Department of Mathematics
[2] University of Ljubljana,Faculty of Mathematics and Physics
[3] University of Maribor,Faculty of Natural Sciences and Mathematics
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Eccentricity; Eccentric connectivity index; Eccentric distance sum; Tree; 05C12; 05C09; 05C92;
D O I
暂无
中图分类号
学科分类号
摘要
The eccentric connectivity index of a graph G is ξc(G)=∑v∈V(G)ε(v)deg(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^c(G) = \sum _{v \in V(G)}\varepsilon (v)\deg (v)$$\end{document}, and the eccentric distance sum is ξd(G)=∑v∈V(G)ε(v)D(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) = \sum _{v \in V(G)}\varepsilon (v)D(v)$$\end{document}, where ε(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon (v)$$\end{document} is the eccentricity of v, and D(v) the sum of distances between v and the other vertices. A lower and an upper bound on ξd(G)-ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) - \xi ^c(G)$$\end{document} is given for an arbitrary graph G. Regular graphs with diameter at most 2 and joins of cocktail-party graphs with complete graphs form the graphs that attain the two equalities, respectively. Sharp lower and upper bounds on ξd(T)-ξc(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(T) - \xi ^c(T)$$\end{document} are given for arbitrary trees. Sharp lower and upper bounds on ξd(G)+ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)+\xi ^c(G)$$\end{document} for arbitrary graphs G are also given, and a sharp lower bound on ξd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)$$\end{document} for graphs G with a given radius is proved.
引用
收藏
页码:1123 / 1134
页数:11
相关论文
共 50 条
[31]   ECCENTRIC CONNECTIVITY INDEX OF UNICYCLIC GRAPHS WITH APPLICATION TO CYCLOALKANES [J].
Haoer, R. S. ;
Atan, K. A. ;
Khalaf, A. M. ;
Hasni, R. .
2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, :211-214
[32]   Some Properties of the Leap Eccentric Connectivity Index of Graphs [J].
Song, Ling ;
Liu, Hechao ;
Tang, Zikai .
IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (04) :227-237
[33]   Maximum eccentric connectivity index for graphs with given diameter [J].
Hauweele, Pierre ;
Hertz, Alain ;
Melot, Hadrien ;
Ries, Bernard ;
Devillez, Gauvain .
DISCRETE APPLIED MATHEMATICS, 2019, 268 :102-111
[34]   On the extreme eccentric distance sum of graphs with some given parameters [J].
Li, Shuchao ;
Wu, Yueyu .
DISCRETE APPLIED MATHEMATICS, 2016, 206 :90-99
[35]   The relationship between the eccentric connectivity index and Zagreb indices [J].
Hua, Hongbo ;
Das, Kinkar Ch. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2480-2491
[36]   On the minimal eccentric connectivity indices of graphs [J].
Zhang, Jianbin ;
Zhou, Bo ;
Liu, Zhongzhu .
DISCRETE MATHEMATICS, 2012, 312 (05) :819-829
[37]   Comparison between the Szeged index and the eccentric connectivity index [J].
Das, Kinkar Ch. ;
Nadjafi-Arani, M. J. .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :74-86
[38]   ON THE ECCENTRIC CONNECTIVITY INDEX AND WIENER INDEX OF A GRAPH [J].
Dankelmann, P. ;
Morgan, M. J. ;
Mukwembi, S. ;
Swart, H. C. .
QUAESTIONES MATHEMATICAE, 2014, 37 (01) :39-47
[39]   A study of a new variant of the eccentric connectivity index for composite graphs [J].
Azari, Mahdieh .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08) :2583-2596
[40]   The Edge Eccentric Connectivity Index of Dendrimers [J].
Odabas, Zeynep Nihan .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (04) :783-784