On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs

被引:0
|
作者
Yaser Alizadeh
Sandi Klavžar
机构
[1] Hakim Sabzevari University,Department of Mathematics
[2] University of Ljubljana,Faculty of Mathematics and Physics
[3] University of Maribor,Faculty of Natural Sciences and Mathematics
[4] Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Eccentricity; Eccentric connectivity index; Eccentric distance sum; Tree; 05C12; 05C09; 05C92;
D O I
暂无
中图分类号
学科分类号
摘要
The eccentric connectivity index of a graph G is ξc(G)=∑v∈V(G)ε(v)deg(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^c(G) = \sum _{v \in V(G)}\varepsilon (v)\deg (v)$$\end{document}, and the eccentric distance sum is ξd(G)=∑v∈V(G)ε(v)D(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) = \sum _{v \in V(G)}\varepsilon (v)D(v)$$\end{document}, where ε(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon (v)$$\end{document} is the eccentricity of v, and D(v) the sum of distances between v and the other vertices. A lower and an upper bound on ξd(G)-ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G) - \xi ^c(G)$$\end{document} is given for an arbitrary graph G. Regular graphs with diameter at most 2 and joins of cocktail-party graphs with complete graphs form the graphs that attain the two equalities, respectively. Sharp lower and upper bounds on ξd(T)-ξc(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(T) - \xi ^c(T)$$\end{document} are given for arbitrary trees. Sharp lower and upper bounds on ξd(G)+ξc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)+\xi ^c(G)$$\end{document} for arbitrary graphs G are also given, and a sharp lower bound on ξd(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^d(G)$$\end{document} for graphs G with a given radius is proved.
引用
收藏
页码:1123 / 1134
页数:11
相关论文
共 50 条
  • [1] On the Difference Between the Eccentric Connectivity Index and Eccentric Distance Sum of Graphs
    Alizadeh, Yaser
    Klavzar, Sandi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 1123 - 1134
  • [2] The difference between the eccentric distance sum and eccentric connectivity index
    Hua, Hongbo
    Wang, Hongzhuan
    Wang, Maolin
    ARS COMBINATORIA, 2019, 144 : 3 - 12
  • [3] On the quotients between the eccentric connectivity index and the eccentric distance sum of graphs with diameter 2
    Hua, Hongbo
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 297 - 300
  • [4] ECCENTRIC CONNECTIVITY INDEX AND ECCENTRIC DISTANCE SUM OF VICSEK FRACTAL
    Xiao, Yunfeng
    Peng, Junhao
    Gao, Long
    Yuan, Zhenhua
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [5] ECCENTRIC CONNECTIVITY INDEX AND ECCENTRIC DISTANCE SUM OF SOME GRAPH OPERATIONS
    Eskender, B.
    Vumar, E.
    TRANSACTIONS ON COMBINATORICS, 2013, 2 (01) : 103 - 111
  • [6] Distance Eccentric Connectivity Index of Graphs
    Alqesmah, Akram
    Saleh, Anwar
    Rangarajan, R.
    Gunes, Aysun Yurttas
    Cangul, Ismail Naci
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 61 - 74
  • [7] On the eccentric distance sum of graphs
    Ilic, Aleksandar
    Yu, Guihai
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 590 - 600
  • [8] On the eccentric distance sum of trees and unicyclic graphs
    Yu, Guihai
    Feng, Lihua
    Ilic, Aleksandar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 99 - 107
  • [10] Extremal graphs of given parameters with respect to the eccentricity distance sum and the eccentric connectivity index
    Zhang, Huihui
    Li, Shuchao
    Xu, Baogen
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 204 - 221