A subgradient method with non-monotone line search

被引:0
作者
O. P. Ferreira
G. N. Grapiglia
E. M. Santos
J. C. O. Souza
机构
[1] Universidade Federal de Goiás,Instituto de Matemática e Estatística
[2] Université Catholique de Louvain,ICTEAM/INMA
[3] Instituto Federal de Educação,AMSE, CNRS
[4] Ciência e Tecnologia do Maranhão,Department of Mathematics
[5] Aix-Marseille University,undefined
[6] Federal University of Piauí,undefined
来源
Computational Optimization and Applications | 2023年 / 84卷
关键词
Subgradient method; Non-monotone line search; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a subgradient method with non-monotone line search for the minimization of convex functions with simple convex constraints. Different from the standard subgradient method with prefixed step sizes, the new method selects the step sizes in an adaptive way. Under mild conditions asymptotic convergence results and iteration-complexity bounds are obtained. Preliminary numerical results illustrate the relative efficiency of the proposed method.
引用
收藏
页码:397 / 420
页数:23
相关论文
共 24 条
[1]  
Brimberg J(1995)The Fermat-Weber location problem revisited Math. Program. 71 71-76
[2]  
Correa R(1993)Convergence of some algorithms for convex minimization Math. Program. 62 261-275
[3]  
Lemaréchal C(1966)Methods of solution of nonlinear extremal problems Cybernetics 2 1-14
[4]  
Ermol’ev YM(1999)Convergence of a simple subgradient level method Math. Program. 85 207-211
[5]  
Goffin J-L(2017)On the worst-case evaluation complexity of non-monotone line search algorithms Comput. Optim. Appl. 68 555-577
[6]  
Kiwiel KC(1986)A nonmonotone line search technique for Newton’s method SIAM J. Numer. Anal. 23 707-716
[7]  
Grapiglia GN(2003)Convergence of approximate and incremental subgradient methods for convex optimization SIAM J. Optim. 14 807-840
[8]  
Sachs EW(2015)Convergence analysis for the modified spectral projected subgradient method Optim. Lett. 9 915-929
[9]  
Grippo L(2019)A numerical study of applying spectral-step subgradient method for solving nonsmooth unconstrained optimization problems Comput. Oper. Res. 104 90-97
[10]  
Lampariello F(2010)The effect of deterministic noise in subgradient methods Math. Program. 125 75-99