A new inequality of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{L}$\end{document}-operator and its application to stochastic non-autonomous impulsive neural networks with delays

被引:0
作者
Tianqi Luo
Shujun Long
机构
[1] Leshan Normal University,College of Mathematics and Information Science
关键词
exponential stability; inequality; non-autonomous; stochastic; delays; neural networks; impulses; 34D23; 34K20;
D O I
10.1186/s13662-015-0697-y
中图分类号
学科分类号
摘要
In this paper, based on the properties of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{L}$\end{document}-operator and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}$\end{document}-matrix, we develop a new inequality of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{L}$\end{document}-operator to be effective for non-autonomous stochastic systems. From the new inequality obtained above, we derive the sufficient conditions ensuring the global exponential stability of the stochastic non-autonomous impulsive cellular neural networks with delays. Our conclusions generalize some works published before. One example is provided to illustrate the superiority of the proposed results.
引用
收藏
相关论文
共 98 条
[1]  
Cao J(1998)Stability analysis of delayed cellular neural networks Neural Netw. 11 1601-1605
[2]  
Zhou D(1988)Cellular neural networks: theory IEEE Trans. Circuits Syst. 35 1257-1272
[3]  
Chua LO(2002)An analysis of global asymptotic stability of delayed cellular neural networks IEEE Trans. Neural Netw. 13 1239-1242
[4]  
Yang L(2003)Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays IEEE Trans. Circuits Syst. 50 268-274
[5]  
Arik S(2008)Delay-dependent stability analysis for impulsive neural networks with time varying delays Neurocomputing 71 1705-1713
[6]  
Liao X(2004)Stability of artificial neural networks with impulses Appl. Math. Comput. 154 783-813
[7]  
Wang J(2010)Stability criteria for impulsive reaction-diffusion Cohen-Grossberg neural networks with time-varying delays Math. Comput. Model. 51 1037-1050
[8]  
Long S(2012)Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations J. Franklin Inst. 349 2461-2479
[9]  
Xu D(2001)Stability of stochastic delay neural networks J. Franklin Inst. 4 338-481
[10]  
Gopalsamy K(2006)Exponential Phys. Lett. A 359 129-137