Actions of SL \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\mathbb{Z})$$\end{document} on Homology Spheres

被引:0
作者
Kamlesh Parwani
机构
[1] Northwestern University,Department of Mathematics
关键词
homology spheres; group actions; almost simple;
D O I
10.1007/s10711-005-1079-5
中图分类号
学科分类号
摘要
Any continuous action of SL \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n, \mathbb{Z})$$\end{document}, where n > 2, on a r-dimensional mod 2 homology sphere factors through a finite group action if r < n −1. In particular, any continuous action of SL \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n + 2, \mathbb{Z})$$\end{document} on the n-dimensional sphere factors through a finite group action.
引用
收藏
页码:215 / 223
页数:8
相关论文
共 11 条
[1]  
Farb B.(1999)Real-analytic actions of lattices Invent. Math. 135 273-296
[2]  
Shalen P.(1994)Arithmetic groups of higher Q-rank cannot act on 1-manifolds Proc. Amer. Math. Soc. 122 333-340
[3]  
Witte D.(1960)Orientation in generalized manifolds and applications to the theory of transformation groups Michigan Math. J. 7 35-64
[4]  
Bredon G.(1944)Permutable periodic transformations Proc. Nat Acad. Sci. U.S.A. 30 105-108
[5]  
Smith P.(1960)New results and old problems in finite transformation groups Bull. Amer. Math. Soc. 66 401-415
[6]  
Smith P.(1967)Solution of the congruence subgroup problem for S Inst. Hautes Etudes Sci. Publ. Math. 33 59-137
[7]  
Bass H.(1952) and Ann. of Math. 56 354-362
[8]  
Milnor J.(1974)A homeomorphism between the 3-sphere and the sum of two solid horned spheres Proc. London Math. Soc. 29 98-110
[9]  
Serre J.P.(undefined)On the higher-dimensional Smith conjecture undefined undefined undefined-undefined
[10]  
Bing R.(undefined)undefined undefined undefined undefined-undefined