Prime number theorems for Rankin-Selberg L-functions over number fields

被引:0
|
作者
Tim Gillespie
GuangHua Ji
机构
[1] The University of Iowa,Department of Mathematics
[2] Shandong University,School of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
Rankin-Selberg ; -functions; prime number theorem; base change; 11F70; 11M26; 11M4;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we define a Rankin-Selberg L-function attached to automorphic cuspidal representations of GLm(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{A} $$\end{document}E) × GLm′ (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{A} $$\end{document}F) over cyclic algebraic number fields E and F which are invariant under the Galois action, by exploiting a result proved by Arthur and Clozel, and prove a prime number theorem for this L-function.
引用
收藏
页码:35 / 46
页数:11
相关论文
共 50 条