Rankin-Selberg ;
-functions;
prime number theorem;
base change;
11F70;
11M26;
11M4;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we define a Rankin-Selberg L-function attached to automorphic cuspidal representations of GLm(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\mathbb{A}
$$\end{document}E) × GLm′ (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\mathbb{A}
$$\end{document}F) over cyclic algebraic number fields E and F which are invariant under the Galois action, by exploiting a result proved by Arthur and Clozel, and prove a prime number theorem for this L-function.
机构:
Indian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, IndiaIndian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, India
Ganguly, Satadal
Mawia, Ramdin
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, IndiaIndian Stat Inst, Theoret Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, India
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
Lao, H.
Zhu, H.
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China