Different Generalized Synchronization Schemes Between Integer-Order and Fractional-Order Chaotic Systems with Different Dimensions

被引:7
作者
Ouannas A. [1 ]
Karouma A. [2 ]
机构
[1] Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Larbi Tebessi, Tebessa
[2] Department of Mathematics and Statistics, University of Ottawa, Ottawa
关键词
Chaos; Control schemes; Different dimensions; Fractional-order system; Generalized synchronization; Integer-order system;
D O I
10.1007/s12591-016-0317-7
中图分类号
学科分类号
摘要
This paper addresses the problem of generalized synchronization (GS) between different dimensional integer-order and fractional-order chaotic systems. Based on the stability theory of linear continuous time dynamical systems, stability results of linear fractional order systems and nonlinear controllers, different criterions are derived to achieve generalized synchronization. The effectiveness of the proposed control schemes are verified by considering two examples: fractional-order chaotic Lorenz and hyperchaotic Lorenz systems and hyperchaotic Chen and fractional-order chaotic Chen systems. © 2016, Foundation for Scientific Research and Technological Innovation.
引用
收藏
页码:125 / 137
页数:12
相关论文
共 31 条
  • [1] Caputo M., Linear models of dissipation whose q is almost frequency independent-ii, Geophys. J. Int., 13, 5, pp. 529-539, (1967)
  • [2] Chen D.Y., Wu C., Iu H.H.C., Ma X.Y., Circuit simulation for synchronization of a fractional-order and integer-order chaotic system, Nonlinear Dyn., 73, 3, pp. 1671-1686, (2013)
  • [3] Chen D.Y., Zhang R.F., Sprott J.C., Ma X.Y., Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control, Nonlinear Dyn., 70, 2, pp. 1549-1561, (2012)
  • [4] Deng W.H., Generalized synchronization in fractional order systems, Phys. Rev. E, 75, 5, (2007)
  • [5] Chen D.Y., Zhang R.F., Ma X.Y., Wang J., Synchronization between a novel class of fractional-order and integer-order chaotic systems via a sliding mode controller, Chin. Phys. B, 21, 12, (2012)
  • [6] Dong P.Z., Shang G., Liu J., Anticipating synchronization of integer order and fractional order hyper-chaotic chen system, Int. J. Mod. Phys. B, 26, 32, (2012)
  • [7] El Gammoudi I., Feki M., Synchronization of integer order and fractional order chua’s systems using robust observer, Commun. Nonlinear Sci. Numer. Simul., 18, 3, pp. 625-638, (2013)
  • [8] Si G.Q., Sun Z.Y., Zhang Y.B., A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system, Chin. Phys. B, 20, 8, (2011)
  • [9] Gorenflo R., Mainardi F., Fractional Calculus, (1997)
  • [10] Jia Q., Projective synchronization of a new hyperchaotic lorenz system, Phys. Lett. A, 370, 1, pp. 40-45, (2007)