Conditioning and spectral properties of isogeometric collocation matrices for acoustic wave problems

被引:0
作者
Zampieri, Elena [1 ]
Pavarino, Luca F. [2 ]
机构
[1] Univ Milan, Dept Math, Via Saldini 50, I-20133 Milan, Italy
[2] Univ Pavia, Dept Math, Via Ferrata 5, I-27100 Pavia, Italy
关键词
Acoustic waves; Absorbing boundary conditions; Isogeometric analysis; Collocation; Newmark method; Condition number; Spectral properties; ABSORBING BOUNDARY-CONDITIONS; DISCRETIZATIONS; GEOPDES; NURBS;
D O I
10.1007/s10444-024-10113-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conditioning and spectral properties of the mass and stiffness matrices for acoustic wave problems are here investigated when isogeometric analysis (IGA) collocation methods in space and Newmark methods in time are employed. Theoretical estimates and extensive numerical results are reported for the eigenvalues and condition numbers of the acoustic mass and stiffness matrices in the reference square domain with Dirichlet, Neumann, and absorbing boundary conditions. This study focuses in particular on the spectral dependence on the polynomial degree p, mesh size h, regularity k, of the IGA discretization and on the time step size Delta t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta t$$\end{document} and parameter beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of the Newmark method. Results on the sparsity of the matrices and the eigenvalue distribution with respect to the number of degrees of freedom d.o.f. and the number of nonzero entries nz are also reported. The results show that the spectral properties of the IGA collocation matrices are comparable with the available spectral estimates for IGA Galerkin matrices associated with the Poisson problem with Dirichlet boundary conditions, and in some cases, the IGA collocation results are better than the corresponding IGA Galerkin estimates, in particular for increasing p and maximal regularity k=p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=p-1$$\end{document}.
引用
收藏
页数:24
相关论文
共 38 条
[1]   Isogeometric collocation for elastostatics and explicit dynamics [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :2-14
[2]   ISOGEOMETRIC COLLOCATION METHODS [J].
Auricchio, F. ;
Da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) :2075-2107
[3]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[4]  
CLAYTON R, 1977, B SEISMOL SOC AM, V67, P1529
[5]   Isogeometric analysis of structural vibrations [J].
Cottrell, J. A. ;
Reali, A. ;
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5257-5296
[6]  
Cottrell J.A., 2009, Isogeometric analysis: toward integration of CAD and FEA, DOI [DOI 10.1002/9780470749081, 10.1002/9780470749081]
[7]   Mathematical analysis of variational isogeometric methods [J].
da Veiga, L. Beirao ;
Buffa, A. ;
Sangalli, G. ;
Vazquez, R. .
ACTA NUMERICA, 2014, 23 :157-287
[8]  
De Boor C., 1978, Applied Mathematical Sciences, VVol. 27
[9]   GeoPDEs: A research tool for Isogeometric Analysis of PDEs [J].
de Falco, C. ;
Reali, A. ;
Vazquez, R. .
ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (12) :1020-1034
[10]   Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation [J].
Dede, Luca ;
Jaeggli, Christoph J. ;
Quarteroni, Alfio .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 :320-348