Character formulas for Feigin–Stoyanovsky’s type subspaces of standard \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{sl}(3, \mathbb{C})^{\widetilde{}}$\end{document}-modules

被引:0
作者
Miroslav Jerković
机构
[1] University of Zagreb,Faculty of Chemical Engineering and Technology
关键词
Affine Lie algebras; Feigin–Stoyanovsky’s type subspaces; Recurrence relations; Fermionic-type character formulas; 17B67; 17B69; 05A19;
D O I
10.1007/s11139-011-9347-5
中图分类号
学科分类号
摘要
Exact sequences of Feigin–Stoyanovsky’s type subspaces for affine Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{sl}(l+1,\mathbb{C})^{\widetilde{}}$\end{document} lead to systems of recurrence relations for formal characters of those subspaces. By solving the corresponding system for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{sl}(3,\mathbb{C})^{\widetilde{}}$\end{document}, we obtain a new family of character formulas for all Feigin–Stoyanovsky’s type subspaces at the general level.
引用
收藏
页码:357 / 376
页数:19
相关论文
共 31 条
  • [1] Calinescu C.(2008)Intertwining vertex operators and certain representations of Commun. Contemp. Math. 10 47-79
  • [2] Calinescu C.(2007)Principal subspaces of higher-level standard J. Pure Appl. Algebra 210 559-575
  • [3] Capparelli S.(2003)-modules Commun. Contemp. Math. 5 947-966
  • [4] Lepowsky J.(2006)The Rogers–Ramanujan recursion and intertwining operators Ramanujan J. 12 379-397
  • [5] Milas A.(2003)The Rogers–Selberg recursions, the Gordon–Andrews identities and intertwining operators Ramanujan J. 7 485-517
  • [6] Capparelli S.(2004)Bosonic formulas for ( Publ. Res. Inst. Math. Sci. 40 125-162
  • [7] Lepowsky J.(2004), Publ. Res. Inst. Math. Sci. 40 163-220
  • [8] Milas A.(1980))-admissible partitions Invent. Math. 62 23-66
  • [9] Feigin B.(1994)Fermionic formulas for ( Funkc. Anal. I Prilož. 28 68-90
  • [10] Jimbo M.(1996),3)-admissible configurations J. Pure Appl. Algebra 112 247-286