A computational study of a family of nilpotent Lie algebras

被引:0
|
作者
Juan Núñez
Ángel F. Tenorio
机构
[1] Universidad de Sevilla,Dpto. Geometría y Topología, Facultad de Matemáticas
[2] Universidad Pablo de Olavide,Dpto. Economía, Métodos Cuantitativos e Historia Económica
来源
The Journal of Supercomputing | 2012年 / 59卷
关键词
Nilpotent Lie algebra; MAPLE; Algorithm; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes an algorithm to compute the law of the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}_{n}$\end{document} associated with the Lie group Gn, formed of all the n×n upper-unitriangular matrices. The goal of this paper is to show the algorithm that computes the law of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{g}_{n}$\end{document} and its implementation using the symbolic computation package MAPLE. In addition, the complexity of the algorithm is described.
引用
收藏
页码:147 / 155
页数:8
相关论文
共 50 条