This paper describes an algorithm to compute the law of the Lie algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathfrak{g}_{n}$\end{document} associated with the Lie group Gn, formed of all the n×n upper-unitriangular matrices. The goal of this paper is to show the algorithm that computes the law of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathfrak{g}_{n}$\end{document} and its implementation using the symbolic computation package MAPLE. In addition, the complexity of the algorithm is described.
机构:
Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
2012 Labs Huawei Tech Investment Co Ltd, Future Network Theory Lab, Shatin, Hong Kong, Peoples R ChinaHangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Peoples R China