A characterization for the self-duality of proper cones

被引:0
作者
S. Gokulraj
A. Chandrashekaran
机构
[1] Indian Institute of Information Technology Dharwad,Faculty of Humanities and Science
[2] Central University of Tamil Nadu,Department of Mathematics
来源
Positivity | 2023年 / 27卷
关键词
Proper cone; Subdual cone; Self-duality; Base of a cone; Face of a convex set; 52A20; 46N10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide a necessary and sufficient condition for a proper subdual cone to be self-dual. As an application of this, we illustrate self-duality of proper cones that occur naturally in the theory of optimization.
引用
收藏
相关论文
共 12 条
[1]  
Barker GP(1976)Self-dual cones in Euclidean spaces Linear Algebra Appl. 13 147-155
[2]  
Foran J(2019)On symmetric linear games Linear Algebra Appl. 562 44-54
[3]  
Gokulraj S(2000)On semidefinite linear complementarity problems Math. Program. Ser. A 88 575-587
[4]  
Chandrashekaran A(1969)Two remarks on copositive matrices Linear Algebra Appl. 2 387-392
[5]  
Gowda MS(1982)On invariant convex cones in simple Lie algebras Proc. Indian Acad. Sci. Math. Sci. 91 167-182
[6]  
Song Y(1970)Cross-positive matrices SIAM J. Numer. Anal. 7 508-519
[7]  
Haynsworth E(undefined)undefined undefined undefined undefined-undefined
[8]  
Hoffman AJ(undefined)undefined undefined undefined undefined-undefined
[9]  
Kumaresan S(undefined)undefined undefined undefined undefined-undefined
[10]  
Ranjan Akhil(undefined)undefined undefined undefined undefined-undefined