A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance

被引:0
|
作者
Fanghao Wan
Chuanlin Yin
Rui Tang
Maohua Chen
Qiang Wu
Cong Huang
Wanqiang Qian
Omar Rota-Stabelli
Nianwan Yang
Shuping Wang
Guirong Wang
Guifen Zhang
Jianyang Guo
Liuqi (Aloy) Gu
Longfei Chen
Longsheng Xing
Yu Xi
Feiling Liu
Kejian Lin
Mengbo Guo
Wei Liu
Kang He
Ruizheng Tian
Emmanuelle Jacquin-Joly
Pierre Franck
Myriam Siegwart
Lino Ometto
Gianfranco Anfora
Mark Blaxter
Camille Meslin
Petr Nguyen
Martina Dalíková
František Marec
Jérôme Olivares
Sandrine Maugin
Jianru Shen
Jinding Liu
Jinmeng Guo
Jiapeng Luo
Bo Liu
Wei Fan
Likai Feng
Xianxin Zhao
Xiong Peng
Kang Wang
Lang Liu
Haixia Zhan
Wanxue Liu
Guoliang Shi
Chunyan Jiang
机构
[1] Chinese Academy of Agricultural Sciences,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection
[2] Chinese Academy of Agricultural Sciences,Agricultural Genomics Institute at Shenzhen
[3] Zhejiang University,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, College of Agriculture and Biotechnology
[4] Chinese Academy of Agricultural Sciences,MARA
[5] Chinese Academy of Sciences,CABI Joint Laboratory for Bio
[6] Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture,safety, Institute of Plant Protection
[7] Hunan Agricultural University,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology
[8] Fondazione Edmund Mach,Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas
[9] Via Mach 1,College of Plant Protection
[10] Shanghai Custom,Department of Sustainable Agro
[11] University of Kansas,ecosystems and Bioresources, IASMA Research and Innovation Centre
[12] INRA,Technical Centre for Animal Plant and Food Inspection and Quarantine
[13] Institute of Ecology and Environmental Sciences of Paris,Ecology and Evolutionary Biology
[14] INRA,Department of Biology and Biotechnology
[15] Plantes et Systèmes de culture Horticole,Centre Agriculture Food Environment (C3A)
[16] 228 route de l’Aérodrome,Edinburgh Genomics, and Institute of Evolutionary Biology, School of Biological Sciences, The King’s Buildings
[17] University of Pavia,Biology Centre of the Czech Academy of Sciences
[18] University of Trento,Faculty of Science
[19] The University of Edinburgh,College of Plant Protection
[20] Institute of Entomology,Institute of Plant Protection
[21] Branišovská 31,College of Plant Health and Medicine
[22] University of South Bohemia,College of Biological and Environmental Engineering
[23] Branišovská 1760,Xinjiang Production & Construction Corps Key Laboratory of Integrated Pest Management on Agriculture in South Xinjiang
[24] Nanjing Agricultural University,undefined
[25] Xinjiang Academy of Agricultural and Reclamation Sciences,undefined
[26] Qingdao Agricultural University,undefined
[27] Zhejiang Shuren University,undefined
[28] Tarim University,undefined
来源
Nature Communications | / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion.
引用
收藏
相关论文
共 50 条
  • [21] A chromosome-level genome assembly of Ostrea denselamellosa provides initial insights into its evolution
    Dong, Zhen
    Bai, Yitian
    Liu, Shikai
    Yu, Hong
    Kong, Lingfeng
    Du, Shaojun
    Li, Qi
    GENOMICS, 2023, 115 (02)
  • [22] A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis
    Gao, Yong
    Zhang, Yanan
    Feng, Chen
    Chu, Honglong
    Feng, Chao
    Wang, Haibo
    Wu, Lifang
    Yin, Si
    Liu, Chao
    Chen, Huanhuan
    Li, Zhumei
    Zou, Zhengrong
    Tang, Lizhou
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1002 - 1011
  • [23] Chromosome-level genome assembly of Dastarcus helophoroides provides insights into CYP450 genes expression upon insecticide exposure
    Zhang, Zhengqing
    Pei, Pei
    Zhang, Meng
    Li, Feifei
    Tang, Guanghui
    PEST MANAGEMENT SCIENCE, 2023, 79 (04) : 1467 - 1482
  • [24] Chromosome-level genome assembly of grass carp (Ctenopharyngodon idella) provides insights into its genome evolution
    Wu, Chang-Song
    Ma, Zi-You
    Zheng, Guo-Dong
    Zou, Shu-Ming
    Zhang, Xu-Jie
    Zhang, Yong-An
    BMC GENOMICS, 2022, 23 (01)
  • [25] Chromosome-level genome assembly of grass carp (Ctenopharyngodon idella) provides insights into its genome evolution
    Chang-Song Wu
    Zi-You Ma
    Guo-Dong Zheng
    Shu-Ming Zou
    Xu-Jie Zhang
    Yong-An Zhang
    BMC Genomics, 23
  • [26] A chromosome-level genome assembly provides new insights into paternal genome elimination in the cotton mealybugPhenacoccus solenopsis
    Li, Meizhen
    Tong, Haojie
    Wang, Shuping
    Ye, Wanyi
    Li, Zicheng
    Omar, Mohamed A. A.
    Ao, Yan
    Ding, Simin
    Li, Zihao
    Wang, Ying
    Yin, Chuanlin
    Zhao, Xianxin
    He, Kang
    Liu, Feiling
    Chen, Xi
    Mei, Yang
    Walters, James R.
    Jiang, Mingxing
    Li, Fei
    MOLECULAR ECOLOGY RESOURCES, 2020, 20 (06) : 1733 - 1747
  • [27] A Chromosome-Level Genome Assembly of Garlic (Allium sativum) Provides Insights into Genome Evolution and Allicin Biosynthesis
    Sun, Xiudong
    Zhu, Siyuan
    Li, Ningyang
    Cheng, Yi
    Zhao, Jing
    Qiao, Xuguang
    Lu, Li
    Liu, Shiqi
    Wang, Yanzhou
    Liu, Chan
    Li, Benping
    Guo, Wu
    Gao, Shuang
    Yang, Zemao
    Li, Fu
    Zeng, Zheng
    Tang, Qing
    Pan, Yupeng
    Guan, Mengjiao
    Zhao, Jian
    Lu, Xiaoming
    Meng, Huanwen
    Han, Zhenlin
    Gao, Chunsheng
    Jiang, Wenkai
    Zhao, Xing
    Tian, Shilin
    Su, Jianguang
    Cheng, Zhihui
    Liu, Touming
    MOLECULAR PLANT, 2020, 13 (09) : 1328 - 1339
  • [28] Chromosome-Level Genome Assembly Provides Insights into the Evolution of the Special Morphology and Behaviour of Lepturacanthus savala
    Wu, Ren-Xie
    Miao, Ben-Ben
    Han, Fang-Yuan
    Niu, Su-Fang
    Liang, Yan-Shan
    Liang, Zhen-Bang
    Wang, Qing-Hua
    GENES, 2023, 14 (06)
  • [29] Chromosome-level genome assembly of the cosmopolitan diatom Skeletonema costatum provides insights into ecological adaptation
    Liu, Shuya
    Chen, Nansheng
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2024, 84
  • [30] Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness
    Chang, Ermei
    Guo, Wei
    Chen, Jiahui
    Zhang, Jin
    Jia, Zirui
    Tschaplinski, Timothy J.
    Yang, Xiaohan
    Jiang, Zeping
    Liu, Jianfeng
    PLANT SCIENCE, 2023, 337