Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions

被引:0
作者
Philip Greengard
Michael O’Neil
机构
[1] Columbia University,
[2] Courant Institute,undefined
[3] NYU,undefined
来源
Statistics and Computing | 2022年 / 32卷
关键词
Gaussian processes; Karhunen–Loève expansions; Eigenfunction expansions; Reduced-rank regression;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we introduce a reduced-rank algorithm for Gaussian process regression. Our numerical scheme converts a Gaussian process on a user-specified interval to its Karhunen–Loève expansion, the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-optimal reduced-rank representation. Numerical evaluation of the Karhunen–Loève expansion is performed once during precomputation and involves computing a numerical eigendecomposition of an integral operator whose kernel is the covariance function of the Gaussian process. The Karhunen–Loève expansion is independent of observed data and depends only on the covariance kernel and the size of the interval on which the Gaussian process is defined. The scheme of this paper does not require translation invariance of the covariance kernel. We also introduce a class of fast algorithms for Bayesian fitting of hyperparameters and demonstrate the performance of our algorithms with numerical experiments in one and two dimensions. Extensions to higher dimensions are mathematically straightforward but suffer from the standard curses of high dimensions.
引用
收藏
相关论文
共 45 条
[1]  
Ambikasaran S(2016)Fast direct methods for Gaussian processes IEEE Trans. Pattern Anal. Mach. Intell. 38 252-265
[2]  
Foreman-Mackey D(2018)Computationally efficient spatial modeling using recursive skeletonization factorizations Spat. Stat. 27 18-30
[3]  
Greengard L(2017)Stan: a probabilistic programming language J. Stat. Softw. 76 1-32
[4]  
Hogg DW(2016)Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets J. Am. Stat. Assoc. 111 800-812
[5]  
O’Neil M(2019)Smooth random functions, random ODEs, and Gaussian processes SIAM Rev. 61 185-205
[6]  
Baugh S(2017)Fast and scalable Gaussian process modeling with applications to astronomical time series Astron. J. 154 220-720
[7]  
Stein ML(2021)A fast regression via SVD and marginalization Comput. Stat. 37 701-1881
[8]  
Carpenter B(2010)Sparse spectrum Gaussian process regression J. Mach. Learn. Res. 11 1865-1611
[9]  
Gelman A(2017)Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations Multiscale Model. Simul. 15 1584-122
[10]  
Hoffman MD(2006)Karhunen–Loéve approximation of random fields by generalized fast multipole methods J. Comput. Phys. 217 100-446