The Structure of Translation-Invariant Spaces on Locally Compact Abelian Groups

被引:0
作者
Marcin Bownik
Kenneth A. Ross
机构
[1] University of Oregon,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2015年 / 21卷
关键词
Translation-invariant space; LCA group; Range function; Dimension function; Spectral function; Continuous frame; 42C15; 43A32; 43A70; 22B99; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a closed co-compact subgroup of a second countable locally compact abelian (LCA) group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. In this paper we study translation-invariant (TI) subspaces of L2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G)$$\end{document} by elements of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. We characterize such spaces in terms of range functions extending the results from the Euclidean and LCA setting. The main innovation of this paper, which contrasts with earlier works, is that we do not require that Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be discrete. As a consequence, our characterization of TI-spaces is new even in the classical setting of G=Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbb {R}^n$$\end{document}. We also extend the notion of the spectral function in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} to the LCA setting. It is shown that spectral functions, initially defined in terms of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, do not depend on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. Several properties equivalent to the definition of spectral functions are given. In particular, we show that the spectral function scales nicely under the action of epimorphisms of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with compact kernel. Finally, we show that for a large class of LCA groups, the spectral function is given as a pointwise limit.
引用
收藏
页码:849 / 884
页数:35
相关论文
共 38 条
[1]  
Aldaz JM(2011)The weak type Ann. Math. 173 1013-1023
[2]  
Ali ST(1993) bounds for the maximal function associated to cubes grow to infinity with the dimension Ann. Phys. 222 1-37
[3]  
Antoine J-P(1994)Continuous frames in Hilbert space J. Funct. Anal. 119 37-78
[4]  
Gazeau J-P(1994)The structure of finitely generated shift-invariant spaces in Trans. Am. Math. Soc. 341 787-806
[5]  
de Boor C(2000)Approximation from shift-invariant subspaces of J. Funct. Anal. 177 282-309
[6]  
DeVore R(2007)The structure of shift-invariant subspaces of J. Funct. Anal. 244 172-219
[7]  
Ron A(2003)The structure of shift-modulation invariant spaces: the rational case Mich. Math. J. 51 387-414
[8]  
de Boor C(2010)The spectral function of shift-invariant spaces J. Funct. Anal. 258 2034-2059
[9]  
DeVore R(2004)Shift-invariant spaces on LCA groups J. Oper. Theory 52 267-291
[10]  
Ron A(1965)The local trace function of shift-invariant subspaces Acta Math. 113 181-218