Genus g Torelli space is the moduli space of genus g curves of compact type equipped with a homology framing. The hyperelliptic locus is a closed analytic subvariety consisting of finitely many mutually isomorphic components. We use properties of the hyperelliptic Torelli group to show that when g≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g\ge 3$$\end{document} these components do not have the homotopy type of a finite CW complex. Specifically, we show that the second rational homology of each component is infinite-dimensional. We give a more detailed description of the topological features of these components when g=3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g=3$$\end{document} using properties of genus 3 theta functions.