Universality in Quantum Hall Systems: Coset Construction of Incompressible States

被引:0
作者
Jürg Fröhlich
Bill Pedrini
Christoph Schweigert
Johannes Walcher
机构
[1] ETH Hönggerberg,Institut für Theoretische Physik
[2] Université Paris VI,LPTHE
来源
Journal of Statistical Physics | 2001年 / 103卷
关键词
quantum Hall effect; conformal field theory; topological field theory; coset construction; Chern–Simons electrodynamics; simple currents;
D O I
暂无
中图分类号
学科分类号
摘要
Incompressible Quantum Hall fluids (QHF's) can be described in the scaling limit by three-dimensional topological field theories. Thanks to the correspondence between three-dimensional topological field theories and two dimensional chiral conformal field theories (CCFT's), we propose to study QHF's from the point of view of CCFT's. We derive consistency conditions and stability criteria for those CCFT's that can be expected to describe a QHF. A general algorithm is presented which uses simple currents to construct interesting examples of such CCFT's. It generalizes the description of QHF's in terms of Quantum Hall lattices. Explicit examples, based on the coset construction, provide candidates for the description of Quantum Hall fluids with Hall conductivity σH=1/2(e2/h), 1/4(e2/h), 3/5(e2/h), (e2/h),... .
引用
收藏
页码:527 / 567
页数:40
相关论文
共 100 条
  • [1] von Klitzing K.(1980)New method for high-accuracy determination of the fine structure constant based on quantized Hall resistance Phys. Rev. Lett. 45 484-undefined
  • [2] Dorda G.(1982)Two-dimensional magnetotransport in the Extreme Quantum Limit Phys. Rev. B 48 1559-undefined
  • [3] Pepper N.(1981)Quantized Hall conductivity in two dimensions Phys. Rev. B 23 5632-undefined
  • [4] Tsui D. C.(1983)Anomalous Quantum Hall effect: An incompressible Quantum Fluid with fractionally charged excitations Phys. Rev. Lett. 50 1395-undefined
  • [5] Störmer H. L.(1984)Fractional statistics and the Quantum Hall effect Phys. Rev. Lett. 53 722-undefined
  • [6] Gossard A. C.(1982)Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential Phys. Rev. B 25 2185-undefined
  • [7] Laughlin R. B.(1988)Absence of backscattering in the quantum Hall effect in multiprobe conductors Phys. Rev. B 38 9375-undefined
  • [8] Laughlin R. B.(1990)Edge channels for the fractional Quantum Hall effect Phys. Rev. Lett. 64 216-undefined
  • [9] Arovas D.(1990)Edge states in the fractional Quantum Hall regime Phys. Rev. Lett. 64 220-undefined
  • [10] Schrieffer J. R.(1989)Vacuum degeneracy of chiral spin states in compactified space Phys. Rev. B 40 7387-undefined