Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group

被引:0
作者
Valentina Franceschi
Dario Prandi
机构
[1] Laboratoire Jacques-Louis Lions,
[2] Sorbonne Université,undefined
[3] Université de Paris,undefined
[4] Inria,undefined
[5] CNRS,undefined
[6] Université Paris-Saclay,undefined
[7] CNRS,undefined
[8] CentraleSupélec,undefined
[9] Laboratoire des Signaux et Systèmes,undefined
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Heisenberg group; Hardy-type inequalities; Carnot–Carathéodory distance; 35R03; 35A23; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Hardy inequalities in the Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^n$$\end{document}, with respect to the Carnot–Carathéodory distance δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} from the origin. We firstly show that, letting Q be the homogenous dimension, the optimal constant in the (unweighted) Hardy inequality is strictly smaller than n2=(Q-2)2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^2 = (Q-2)^2/4$$\end{document}. Then, we prove that, independently of n, the Heisenberg group does not support a radial Hardy inequality, i.e., a Hardy inequality where the gradient term is replaced by its projection along ∇Hδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \!_{\mathbb {H}}\delta $$\end{document}. This is in stark contrast with the Euclidean case, where the radial Hardy inequality is equivalent to the standard one, and has the same constant. Motivated by these results, we consider Hardy inequalities for non-radial directions, i.e., directions tangent to the Carnot–Carathéodory balls. In particular, we show that the associated constant is bounded on homogeneous cones CΣ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\Sigma $$\end{document} with base Σ⊂S2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {S}}^{2n}$$\end{document}, even when Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} degenerates to a point. This is a genuinely sub-Riemannian behavior, as such constant is well known to explode for homogeneous cones in the Euclidean space.
引用
收藏
页码:2455 / 2480
页数:25
相关论文
共 50 条
[31]   Hardy-type inequalities associated with the Weinstein operator [J].
Hatem Mejjaoli .
Journal of Inequalities and Applications, 2015
[32]   Best constants in the Hardy-Rellich type inequalities on the Heisenberg group [J].
Yang Qiaohua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) :423-431
[33]   Hardy inequalities in half spaces of the Heisenberg group [J].
Han, Junqiang ;
Niu, Pengcheng ;
Qin, Wenji .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) :405-417
[34]   SOME DYNAMIC HARDY-TYPE INEQUALITIES WITH GENERAL KERNEL [J].
Bohner, Martin ;
Nosheen, Ammara ;
Pecaric, Josip ;
Younus, Awais .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01) :185-199
[35]   Time scale Hardy-type inequalities with ?broken? exponent [J].
Oguntuase, James A. ;
Fabelurin, Olanrewaju O. ;
Adeagbo-Sheikh, Abdulaziz G. ;
Persson, Lars-Erik .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[36]   ON HARDY-TYPE INEQUALITIES AS AN INTELLECTUAL ADVENTURE FOR 100 YEARS [J].
Persson L.-E. ;
Samko N. .
Journal of Mathematical Sciences, 2024, 280 (2) :180-197
[37]   TIME SCALES HARDY-TYPE INEQUALITIES VIA SUPERQUADRACITY [J].
Oguntuase, James Adedayo ;
Persson, Lars-Erik .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (02) :61-73
[38]   Hardy inequalities with Aharonov-Bohm type magnetic field on the Heisenberg group [J].
Yingxiong Xiao .
Journal of Inequalities and Applications, 2015
[39]   Hardy inequalities with Aharonov-Bohm type magnetic field on the Heisenberg group [J].
Xiao, Yingxiong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[40]   Some weighted Hardy and Rellich inequalities on the Heisenberg group [J].
Xi, Lin ;
Dou, Jingbo .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)