Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group

被引:0
作者
Valentina Franceschi
Dario Prandi
机构
[1] Laboratoire Jacques-Louis Lions,
[2] Sorbonne Université,undefined
[3] Université de Paris,undefined
[4] Inria,undefined
[5] CNRS,undefined
[6] Université Paris-Saclay,undefined
[7] CNRS,undefined
[8] CentraleSupélec,undefined
[9] Laboratoire des Signaux et Systèmes,undefined
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Heisenberg group; Hardy-type inequalities; Carnot–Carathéodory distance; 35R03; 35A23; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Hardy inequalities in the Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^n$$\end{document}, with respect to the Carnot–Carathéodory distance δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} from the origin. We firstly show that, letting Q be the homogenous dimension, the optimal constant in the (unweighted) Hardy inequality is strictly smaller than n2=(Q-2)2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^2 = (Q-2)^2/4$$\end{document}. Then, we prove that, independently of n, the Heisenberg group does not support a radial Hardy inequality, i.e., a Hardy inequality where the gradient term is replaced by its projection along ∇Hδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \!_{\mathbb {H}}\delta $$\end{document}. This is in stark contrast with the Euclidean case, where the radial Hardy inequality is equivalent to the standard one, and has the same constant. Motivated by these results, we consider Hardy inequalities for non-radial directions, i.e., directions tangent to the Carnot–Carathéodory balls. In particular, we show that the associated constant is bounded on homogeneous cones CΣ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\Sigma $$\end{document} with base Σ⊂S2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {S}}^{2n}$$\end{document}, even when Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} degenerates to a point. This is a genuinely sub-Riemannian behavior, as such constant is well known to explode for homogeneous cones in the Euclidean space.
引用
收藏
页码:2455 / 2480
页数:25
相关论文
共 50 条
  • [21] Hardy’s Inequalities for the Heisenberg Group
    Jinsen Xiao
    Jianxun He
    Xingya Fan
    Potential Analysis, 2019, 51 : 165 - 177
  • [22] Some Hardy Inequalities on the Heisenberg Group
    L. D'Ambrosio
    Differential Equations, 2004, 40 : 552 - 564
  • [23] Hardy's Inequalities for the Heisenberg Group
    Xiao, Jinsen
    He, Jianxun
    Fan, Xingya
    POTENTIAL ANALYSIS, 2019, 51 (02) : 165 - 177
  • [24] Refinements of Hardy-type inequalities via superquadracity
    Oguntuase, James Adedayo
    Persson, Lars-Erik
    Fabelurin, Olanrewaju Olabiyi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (3-4): : 467 - 476
  • [25] On some new developments of Hardy-type inequalities
    Abramovich, Shoshana
    Persson, Lars-Erik
    Samko, Natasha
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 739 - 746
  • [26] Refinements of Hardy-type Integral Inequalities with Kernels
    Iqbal, Sajid
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2016, 48 (01): : 19 - 28
  • [27] Hardy-type inequalities associated with the Weinstein operator
    Mejjaoli, Hatem
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [28] SOME NEW REFINEMENTS OF HARDY-TYPE INEQUALITIES
    Oguntuase, James Adedayo
    Fabelurin, Olanrewaju Olabiyi
    Persson, Lars-Erik
    Adeleke, Emmanuel Oyeyemi
    JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (02): : 123 - 131
  • [29] Hardy-type inequalities associated with the Weinstein operator
    Hatem Mejjaoli
    Journal of Inequalities and Applications, 2015
  • [30] Horizontal semiconcavity for the square of Carnot-Carathéodory distance on step 2 Carnot groups and applications to Hamilton-Jacobi equations
    Dragoni, Federica
    Liu, Qing
    Zhang, Ye
    NONLINEARITY, 2025, 38 (04)