Invariant Subspaces for Classical Operators on Weighted Spaces of Holomorphic Functions

被引:0
作者
Alexander V. Abanin
Pham Trong Tien
机构
[1] Southern Federal University,
[2] Southern Mathematical Institute,undefined
[3] Hanoi University of Science,undefined
[4] VNU,undefined
来源
Integral Equations and Operator Theory | 2017年 / 89卷
关键词
Weighted spaces of holomorphic functions; Integration operator; Differentiation operator; Invariant subspaces; Bergman spaces; Bloch spaces; Dirichlet spaces; Fock spaces; Primary 47B38; 47A15; Secondary 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
We develop an approach to describe invariant subspaces of the integration operator on various scales of weighted spaces of holomorphic functions on the unit disk and the complex plane. It allows us to solve the problem for wide classes of Bergman, Bloch, Dirichlet, and Fock spaces, while all previous known results concern spaces defined by some weights of a special form. In addition, we also show that an analogous method works as well for the differentiation operator on weighted spaces of entire functions.
引用
收藏
页码:409 / 438
页数:29
相关论文
共 36 条
[1]  
Abanin AV(2017)Differentiation and integration operators on weighted Banach spaces of holomorphic functions Math. Nachr. 290 1144-1162
[2]  
Tien PT(1949)Sur une problème de translations C. R. Acad. Sci. Paris 229 540-542
[3]  
Agmon S(2008)Volterra invariant subspaces of Bull. Sci. Math. 132 510-528
[4]  
Aleman A(2006)Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions Contemp. Math. 404 27-39
[5]  
Korenblum B(1993)Weighted spaces of holomorphic functions on balanced domains Michigan Math. J. 40 271-297
[6]  
Atzmon A(1998)Associated weights and spaces of holomorphic functions Stud. Math. 127 137-168
[7]  
Brive B(1991)The cyclic behavior of translation operators on Hilbert spaces of entire functions Indiana Univ. Math. J. 40 1421-1449
[8]  
Bierstedt KD(2012)A Volterra-type integration operator on Fock spaces Proc. Am. Math. Soc. 140 4247-4257
[9]  
Bonet J(2016)Integral operators, embedding theorems and a Littlewood–Paley formula on weighted Fock spaces J. Geom. Anal. 26 1109-1154
[10]  
Galbis A(1938)A problem Uspehi Matem. Nauk. 5 233-247