Singular Manakov flows and geodesic flows on homogeneous spaces of SO(N)

被引:0
作者
V. Dragović
B. Gajić
B. Jovanović
机构
[1] Mathematical Institute SANU,
[2] GFM,undefined
[3] Univ. of Lisbon,undefined
来源
Transformation Groups | 2009年 / 14卷
关键词
Homogeneous Space; Poisson Bracket; Einstein Metrics; Symplectic Leaf; Adjoint Orbit;
D O I
暂无
中图分类号
学科分类号
摘要
We prove complete integrability of the Manakov-type SO(n)-invariant geodesic flows on homogeneous spaces SO(n)/SO(k1) ×⋯× SO(kr), for any choice of k1,…,kr, k1 + ⋯ + kr ⩽ n. In particular, a new proof of the integrability of a Manakov symmetric rigid body motion around a fixed point is presented. Also, the proof of integrability of the SO(n)-invariant Einstein metrics on SO(k1 + k2 + k3)/SO(k1) × SO(k2) × SO(k3) and on the Stiefel manifolds V (n, k) = SO(n)/SO(k) is given.
引用
收藏
页码:513 / 530
页数:17
相关论文
共 25 条
[1]  
Болсинов В.(1991)Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution Math. USSR-Izv. 38 68-92
[2]  
Bolsinov A. V.(2003)Non-commutative integrability, moment map and geodesic flows Ann. Global Anal. Geom. 23 305-322
[3]  
Bolsinov AV(2004)Complete involutive algebras of functions on cotangent bundles of homogeneous spaces Math. Z. 246 213-236
[4]  
Jovanović B(2005)Integrable flows and B̈cklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group SO(3) J. Nonlinear Math. Phys. 12 77-94
[5]  
Bolsinov AV(1874)Ueber gewisse Differentialgleichungen Math. Ann. 8 35-44
[6]  
Jovanović B(1984)The algebraic complete integrability of geodesic flow on SO( Comm. Math. Phys. 94 271-287
[7]  
Fedorov Yu N(1973)) J. Differential Geom. 8 599-614
[8]  
Frahm F(Мат)Einstein metrics on principal fiber bundles Math. USSR Sb. 125 539-546
[9]  
Haine L(2001)Integrability of the Euler equations associated with filtrations of semisimple Lie algebras Compositio Math. 127 55-67
[10]  
Jensen G(2004)Actions of Borel subgroups on homogeneous spaces of reductive complex Lie groups and integrability Transform. Groups 9 289-308