Sorting by Swaps with Noisy Comparisons

被引:0
作者
Tomáš Gavenčiak
Barbara Geissmann
Johannes Lengler
机构
[1] Charles University,Department of Applied Mathematics
[2] CTU,Department of Computer Science, FEE
[3] ETH Zurich,Department of Computer Science
来源
Algorithmica | 2019年 / 81卷
关键词
Sorting; Random swaps; Evolutionary algorithms; Comparison-based; Noise; Optimization heuristics;
D O I
暂无
中图分类号
学科分类号
摘要
We study sorting of permutations by random swaps if each comparison gives the wrong result with some fixed probability p<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<1/2$$\end{document}. We use this process as prototype for the behaviour of randomized, comparison-based optimization heuristics in the presence of noisy comparisons. As quality measure, we compute the expected fitness of the stationary distribution. To measure the runtime, we compute the minimal number of steps after which the average fitness approximates the expected fitness of the stationary distribution. We study the process where in each round a random pair of elements at distance at most r are compared. We give theoretical results for the extreme cases r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1$$\end{document} and r=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=n$$\end{document}, and experimental results for the intermediate cases. We find a trade-off between faster convergence (for large r) and better quality of the solution after convergence (for small r).
引用
收藏
页码:796 / 827
页数:31
相关论文
共 50 条
  • [41] No Sorting? Better Searching!
    Franceschini, Gianni
    Grossi, Roberto
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (01)
  • [42] Sorting in Space and Words
    Samet, Hanan
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1719 - 1722
  • [43] Signaling and optimal sorting
    Timothy Perri
    Journal of Economics, 2019, 126 : 135 - 151
  • [44] Sorting in Column Stores
    Daniel Bößwetter
    Datenbank-Spektrum , 2011, 11 (2) : 91 - 100
  • [45] What is a sorting function?
    Henglein, Fritz
    JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, 2009, 78 (07): : 552 - 572
  • [46] Signaling and optimal sorting
    Perri, Timothy
    JOURNAL OF ECONOMICS, 2019, 126 (02) : 135 - 151
  • [47] Sorting Algorithms in MOQA
    Townley, Jacinta
    Manning, Joseph
    Schellekens, Michel
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2009, 225 : 391 - 404
  • [48] Incremental Sorting Algorithm
    Iqbal, Sardar Zafar
    Gull, Hina
    Ahmad, Jamil
    SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, VOL 2, PROCEEDINGS, 2009, : 378 - +
  • [49] Event shape sorting
    Renata Kopečná
    Boris Tomášik
    The European Physical Journal A, 2016, 52
  • [50] Spatial Sorting and Inequality
    Diamond, Rebecca
    Gaubert, Cecile
    ANNUAL REVIEW OF ECONOMICS, 2022, 14 : 795 - 819