共 20 条
Reducibility of pointlike problems
被引:0
|作者:
J. Almeida
J. C. Costa
M. Zeitoun
机构:
[1] Universidade do Porto,Centro de Matemática e Departamento de Matemática, Faculdade de Ciências
[2] Universidade do Minho,Centro de Matemática e Departamento de Matemática e Aplicações
[3] Univ. Bordeaux,undefined
[4] LaBRI,undefined
[5] UMR 5800,undefined
来源:
Semigroup Forum
|
2017年
/
94卷
关键词:
Pseudovariety;
Profinite semigroup;
Pointlike set ;
Regular language;
Aperiodic semigroup;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that the pointlike and the idempotent pointlike problems are reducible with respect to natural signatures in the following cases: the pseudovariety of all finite semigroups in which the order of every subgroup is a product of elements of a fixed set π\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi $$\end{document} of primes; the pseudovariety of all finite semigroups in which every regular J\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal J$$\end{document}-class is the product of a rectangular band by a group from a fixed pseudovariety of groups that is reducible for the pointlike problem, respectively graph reducible. Allowing only trivial groups, we obtain ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega $$\end{document}-reducibility of the pointlike and idempotent pointlike problems, respectively for the pseudovarieties of all finite aperiodic semigroups (A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathsf{A}$$\end{document}) and of all finite semigroups in which all regular elements are idempotents (DA\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathsf{DA}$$\end{document}).
引用
收藏
页码:325 / 335
页数:10
相关论文