First Integrals, Liouville Theorem, and Dirac Brackets

被引:0
作者
Iram Gleria
Tarcísio M. Rocha Filho
Annibal D. Figueiredo Neto
José David M. Vianna
机构
[1] Universidade Federal de Alagoas,Instituto de Física
[2] Universidade de Brasília,Instituto de Física and International Center for Condensed Matter Physics
[3] Universidade Federal da Bahia,Instituto de Física
来源
Brazilian Journal of Physics | 2017年 / 47卷
关键词
Dirac brackets; Liouville theorem; Integrable systems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the conditions for the existence of first integrals of movement and the Liouville theorem on integrable systems. We revise the core results of the Hamilton-Jacobi theory and discuss the extension of the formalism to encompass constrained systems using Dirac brackets, originally developed in the context of the canonical quantization of constrained systems. As an application, we analyze a Hamiltonian that represents the classical limit of a Fermionic system of oscillators.
引用
收藏
页码:441 / 446
页数:5
相关论文
empty
未找到相关数据