Accurate remaining useful life estimation of lithium-ion batteries in electric vehicles based on a measurable feature-based approach with explainable AI

被引:0
作者
Sadiqa Jafari
Yung Cheol Byun
机构
[1] Jeju National University,Department of Electronic Engineering
[2] Jeju National University,Department of Computer Engineering, Major of Electronic Engineering
[3] Institute of Information Science and Technology,undefined
来源
The Journal of Supercomputing | 2024年 / 80卷
关键词
Remaining useful life; Lithium-ion batteries; Discharge time; Battery degradation; Learning algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
As Electric Vehicles (EVs) become increasingly prevalent, accurately estimating Lithium-ion Batteries (LIBs) Remaining Useful Life (RUL) is crucial for ensuring safety and avoiding operational risks beyond their service life threshold. However, directly measuring battery capacity during EV operation is challenging. In this paper, we propose a novel approach that leverages measurable features based on the discharge time and battery temperature to estimate RUL. Our framework relies on a novel feature extraction strategy that accurately characterizes the battery, leading to improved RUL predictions. Multiple machine learning algorithms are employed and evaluated. Our experimental results demonstrate that the proposed method accurately estimates capacity with minimal hyperparameter tuning. The R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} scores across various battery numbers indicate strong predictive performance for models like XGBoost, RF, AdaBoost, and others, with improvement percentages ranging from 85% to 99%, which the model’s generalizability verifies across other batteries. The results show the effectiveness of our proposed method in accurately estimating the RUL of LIBs in EVs.
引用
收藏
页码:4707 / 4732
页数:25
相关论文
共 50 条
  • [21] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    ENERGY, 2021, 234
  • [22] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194
  • [23] Online Remaining Useful Life Prediction of Lithium-ion Batteries Based on Hybrid Model
    Sun, Jing
    Yan, Huiyi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (04)
  • [24] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [25] A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium-ion batteries
    Xia, Wei
    Xu, Jinli
    Liu, Baolei
    Duan, Huiyun
    ENERGY SCIENCE & ENGINEERING, 2024, 12 (08) : 3390 - 3400
  • [26] A feature fusion optimization algorithm for predicting the remaining useful life of lithium-ion batteries
    Zhang, Xinghong
    Xu, Yi
    Gong, Zehao
    ENERGY REPORTS, 2023, 9 : 142 - 153
  • [27] A feature fusion optimization algorithm for predicting the remaining useful life of lithium-ion batteries
    Zhang, Xinghong
    Xu, Yi
    Gong, Zehao
    ENERGY REPORTS, 2023, 9 : 142 - 153
  • [28] State-of-health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm
    Hong, Shiding
    Qin, Chaokui
    Lai, Xin
    Meng, Zheng
    Dai, Haifeng
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [29] Comparing Machine Learning Strategies for SoH Estimation of Lithium-Ion Batteries Using a Feature-Based Approach
    Marri, Iacopo
    Petkovski, Emil
    Cristaldi, Loredana
    Faifer, Marco
    ENERGIES, 2023, 16 (11)
  • [30] Predicting the Future Capacity and Remaining Useful Life of Lithium-Ion Batteries Based on Deep Transfer Learning
    Sun, Chenyu
    Lu, Taolin
    Li, Qingbo
    Liu, Yili
    Yang, Wen
    Xie, Jingying
    BATTERIES-BASEL, 2024, 10 (09):