Accurate remaining useful life estimation of lithium-ion batteries in electric vehicles based on a measurable feature-based approach with explainable AI

被引:0
|
作者
Sadiqa Jafari
Yung Cheol Byun
机构
[1] Jeju National University,Department of Electronic Engineering
[2] Jeju National University,Department of Computer Engineering, Major of Electronic Engineering
[3] Institute of Information Science and Technology,undefined
来源
The Journal of Supercomputing | 2024年 / 80卷
关键词
Remaining useful life; Lithium-ion batteries; Discharge time; Battery degradation; Learning algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
As Electric Vehicles (EVs) become increasingly prevalent, accurately estimating Lithium-ion Batteries (LIBs) Remaining Useful Life (RUL) is crucial for ensuring safety and avoiding operational risks beyond their service life threshold. However, directly measuring battery capacity during EV operation is challenging. In this paper, we propose a novel approach that leverages measurable features based on the discharge time and battery temperature to estimate RUL. Our framework relies on a novel feature extraction strategy that accurately characterizes the battery, leading to improved RUL predictions. Multiple machine learning algorithms are employed and evaluated. Our experimental results demonstrate that the proposed method accurately estimates capacity with minimal hyperparameter tuning. The R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} scores across various battery numbers indicate strong predictive performance for models like XGBoost, RF, AdaBoost, and others, with improvement percentages ranging from 85% to 99%, which the model’s generalizability verifies across other batteries. The results show the effectiveness of our proposed method in accurately estimating the RUL of LIBs in EVs.
引用
收藏
页码:4707 / 4732
页数:25
相关论文
共 50 条
  • [11] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [12] Indirect remaining useful life prognostics for lithium-ion batteries
    Li, Lianbing
    Zhu, Yazun
    Wang, Linglong
    Yue, Donghua
    Li, Duo
    2018 24TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC' 18), 2018, : 725 - 729
  • [13] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Deep Learning Model
    Chen, Chao
    Wei, Jie
    Li, Zhenhua
    PROCESSES, 2023, 11 (08)
  • [14] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Support Vector Regression
    Xu J.
    Ni Y.
    Zhu C.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36 (17): : 3693 - 3704
  • [15] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
    Tang, Shengjin
    Yu, Chuanqiang
    Wang, Xue
    Guo, Xiaosong
    Si, Xiaosheng
    ENERGIES, 2014, 7 (02): : 520 - 547
  • [16] State of Health Estimation and Remaining Useful Life Prediction of Lithium-Ion Batteries by Charging Feature Extraction and Ridge Regression
    Wu, Minghu
    Yue, Chengpeng
    Zhang, Fan
    Sun, Rui
    Tang, Jing
    Hu, Sheng
    Zhao, Nan
    Wang, Juan
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [17] Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter
    Pang, Hui
    Chen, Kaiqiang
    Geng, Yuanfei
    Wu, Longxing
    Wang, Fengbin
    Liu, Jiahao
    ENERGY, 2024, 293
  • [18] Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach
    Li, Jie
    Zhao, Shiming
    Miah, Md Sipon
    Niu, Mingbo
    ENERGY REPORTS, 2023, 10 : 3629 - 3638
  • [19] High precision estimation of remaining useful life of lithium-ion batteries based on strongly correlated aging feature factors and AdaBoost framework
    Feng, Renjun
    Wang, Shunli
    Yu, Chunmei
    Fernandez, Carlos
    IONICS, 2024, 30 (10) : 6215 - 6237
  • [20] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)