A quantum bound on the thermodynamic description of gravity

被引:0
作者
Shahar Hod
机构
[1] The Ruppin Academic Center,
[2] The Hadassah Academic College,undefined
来源
The European Physical Journal Plus | / 133卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The seminal works of Bekenstein and Hawking have revealed that black holes have a well-defined thermodynamic description. In particular, it is often stated in the physics literature that black holes, like mundane physical systems, obey the first law of thermodynamics: ΔS=ΔE/T BH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Delta S=\Delta E/T_{\rm BH}$\end{document}, where T BH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ T_{\rm BH}$\end{document} is the Bekenstein-Hawking temperature of the black hole. In the present paper we test the regime of validity of the thermodynamic description of gravity. In particular, we provide compelling evidence that, due to quantum effects, the first law of thermodynamics breaks down in the low-temperature regime T BH ×rH≲(ℏ/rH)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\rm BH} \times r_{\rm H} \lesssim (\hbar/r_{\rm H})^{2}$\end{document} of near-extremal black holes (here rH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r_{\rm H}$\end{document} is the radius of the black-hole horizon).
引用
收藏
相关论文
共 6 条
[1]  
Bekenstein J.D.(1981)undefined Phys. Rev. D 23 287-undefined
[2]  
Bekenstein J.D.(1973)undefined Phys. Rev. D 7 2333-undefined
[3]  
Hawking S.W.(1975)undefined Commun. Math. Phys. 43 199-undefined
[4]  
Hod S.(2008)undefined Phys. Rev. Lett. 100 121101-undefined
[5]  
Christodoulou D.(1971)undefined Phys. Rev. D 4 3552-undefined
[6]  
Ruffini R.(undefined)undefined undefined undefined undefined-undefined