Random walks on diestel-leader graphs

被引:0
作者
D. Bertacchi
机构
[1] Università di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2001年 / 71卷
关键词
tree; horocyclic function; -graph; transition probabilities;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate various features of a quite new family of graphs, introduced as a possible example of vertex-transitive graph not roughly isometric with a Cayley graph of some finitely generated group. We exhibit a natural compactification and study a large class of random walks, proving theorems concerning almost sure convergence to the boundary, a strong law of large numbers and a central limit theorem. The asymptotic type of then-step transition probabilities of the simple random walk is determined.
引用
收藏
页码:205 / 224
页数:19
相关论文
共 9 条
[1]  
Alexopoulos G.(1992)A lower estimate for central probabilities on polycyclic groups Can. J. Math. 44 897-910
[2]  
Avez A.(1973)Limite des quotients pour des marches aléatoires sur des groupes C. R. Acad. Sci. Paris Sér. A 276 317-320
[3]  
Cartier P.(1972)Fonctions harmoniques sur un arbre Symposia Math. 9 203-270
[4]  
Cartwright D. I.(1994)Random walks on the affine group of local fields and of homogeneous trees Ann. Inst. Fourier (Grenoble) 44 1243-1288
[5]  
Kaimanovich V. A.(1968)The ergodic theory of subadditive processes J. Royal Stat. Soc., Ser. B 30 499-510
[6]  
Woess W.(1995)Isoperimetric inequalities and decay of iterated kernels for almost-transitive graphs Combinatorics, Probability and Computing 4 419-442
[7]  
Kingman J. F. C.(1989)Boundaries of random walks on graphs and groups with infinitely many ends Israeli Math. 68 271-301
[8]  
Saloff-Coste L.(undefined)undefined undefined undefined undefined-undefined
[9]  
Woess W.(undefined)undefined undefined undefined undefined-undefined