Bilinear approach to soliton and periodic wave solutions of two nonlinear evolution equations of Mathematical Physics

被引:0
作者
Rui Cao
Qiulan Zhao
Lin Gao
机构
[1] Heze University,College of Mathematics and Statistics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
[3] Heze University,College Library
来源
Advances in Difference Equations | / 2019卷
关键词
Potential Kadomtsev–Petviashvili equation; (3 + 1)-dimensional potential-YTSF equation; N-soliton solution; Periodic wave solution; Hirota method;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, the potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are investigated, which can be used to describe many mathematical and physical backgrounds, e.g., fluid dynamics and communications. Based on Hirota bilinear method, the bilinear equation for the (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation is obtained by applying an appropriate dependent variable transformation. Then N-soliton solutions of nonlinear evolution equation are derived by the perturbation technique, and the periodic wave solutions for potential Kadomtsev–Petviashvili equation and (3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3+1$\end{document})-dimensional potential-YTSF equation are constructed by employing the Riemann theta function. Furthermore, the asymptotic properties of periodic wave solutions show that soliton solutions can be derived from periodic wave solutions.
引用
收藏
相关论文
共 50 条
[41]   New Rational Form Solutions to Coupled Nonlinear Wave Equations [J].
FU Zun-Tao ;
LIN Guang-Xing ;
LIU Shi-Kuo ;
LIU Shi-Da ;
School of Physics .
Communications in Theoretical Physics, 2005, 44 (08) :235-242
[42]   New rational form solutions to coupled nonlinear wave equations [J].
Fu, ZT ;
Lin, GX ;
Liu, SK ;
Liu, SD .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (02) :235-242
[43]   Periodic wave solutions and solitary wave solutions of generalized modified Boussinesq equation and evolution relationship between both solutions [J].
Li, Shaowei ;
Zhang, Weiguo ;
Bu, Xiaoshuang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :96-126
[44]   EXISTENCE AND ORBITAL STABILITY OF PERIODIC WAVE SOLUTIONS FOR THE NONLINEAR SCHRoDINGER EQUATION [J].
Chen, Aiyong ;
Wen, Shuangquan ;
Huang, Wentao .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (02) :137-148
[45]   Bifurcations and Exact Traveling Wave Solutions in Two Nonlinear Wave Systems [J].
Zhou, Yan ;
Zhuang, Jinsen ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (06)
[46]   Soliton and quasi-periodic wave solutions for b-type Kadomtsev–Petviashvili equation [J].
Manjit Singh ;
R. K. Gupta .
Indian Journal of Physics, 2017, 91 :1345-1354
[47]   Bilinear auto-Backlund transformation, soliton and periodic-wave solutions for a (2+1)-dimensional generalized Kadomtsev-Petviashvili system in fluid mechanics and plasma [J].
Shen, Yuan ;
Tian, Bo ;
Gao, Xiao-Tian .
CHINESE JOURNAL OF PHYSICS, 2022, 77 :2698-2706
[48]   Construction of exact periodic wave and solitary wave solutions for the long-short wave resonance equations by VIM [J].
Deng, Chaofa ;
Shang, Yadong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1186-1195
[49]   Explicit N-fold Darboux transformations and soliton solutions for nonlinear derivative Schrodinger equations [J].
Fan, EG .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (06) :651-656
[50]   New exact travelling wave and periodic solutions of discrete nonlinear Schrodinger equation [J].
Yang, Q ;
Dai, CQ ;
Zhang, JF .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (02) :240-244