Random Walks on the Affine Group of a Homogeneous Tree in the Drift-Free Case

被引:0
作者
Dariusz Buraczewski
Konrad Kolesko
机构
[1] Uniwersytet Wrocławski,Instytut Matematyczny
来源
Journal of Theoretical Probability | 2012年 / 25卷
关键词
Random walk; Affine group; Homogeneous tree; Invariant measure; 60B15;
D O I
暂无
中图分类号
学科分类号
摘要
The affine group of a homogeneous tree is the group of all its isometries fixing an end of its boundary. We consider a random walk with law μ on this group and the associated random processes on the tree and its boundary. In the drift-free case there exists on the boundary of the tree a unique μ-invariant Radon measure. In this paper we describe its behaviour at infinity.
引用
收藏
页码:189 / 204
页数:15
相关论文
共 6 条
  • [1] Brofferio S.(2004)Renewal theory on the affine group of an oriented tree J. Theor. Probab. 17 819-859
  • [2] Buraczewski D.(2007)On invariant measures of stochastic recursions in a critical case Ann. Appl. Probab. 17 1245-1272
  • [3] Cartwright D.I.(1994)Random walks on the affine group of local fields and of homogeneous trees Ann. Inst. Fourier (Grenoble) 44 1243-1288
  • [4] Kaimanovich V.A.(2010)Asymptotic properties of harmonic measures on homogeneous trees Colloq. Math. 118 525-537
  • [5] Woess W.(undefined)undefined undefined undefined undefined-undefined
  • [6] Kolesko K.(undefined)undefined undefined undefined undefined-undefined