We investigate the scattering of Gaussian pulse by an absorbing half-plane satisfying Myers’ impedance conditions. The model problem is considered for a subsonic flow in a moving fluid. The Wiener-Hopf technique followed by the spatial and temporal Fourier transforms and method of Steepest descent enables us to develop the far field solution analytically. It is observed that the Myers’ impedance condition found higher-order accuracy of Mach number as compared with the results obtained while using Ingard’s condition. The solution to the underlying problem leads itself to the variety of problems thereby including the effects of Gaussian pulses.