Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization

被引:0
|
作者
Satomi Suzuki
Guillaume Caumon
Jef Caers
机构
[1] Stanford University,Department of Energy Resources Engineering
[2] Nancy Université,School of Geology, CRPG
来源
Computational Geosciences | 2008年 / 12卷
关键词
History matching; Data assimilation; Structural uncertainty; Discrete-space optimization; Distance-based model parameterization; Distance function; Stochastic search;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a novel history-matching method where reservoir structure is inverted from dynamic fluid flow response. The proposed workflow consists of searching for models that match production history from a large set of prior structural model realizations. This prior set represents the reservoir structural uncertainty because of interpretation uncertainty on seismic sections. To make such a search effective, we introduce a parameter space defined with a “similarity distance” for accommodating this large set of realizations. The inverse solutions are found using a stochastic search method. Realistic reservoir examples are presented to prove the applicability of the proposed method.
引用
收藏
页码:105 / 119
页数:14
相关论文
共 50 条
  • [1] Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization
    Suzuki, Satomi
    Caumon, Guillaume
    Caers, Jef
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (01) : 105 - 119
  • [2] A distance-based prior model parameterization for constraining solutions of spatial inverse problems
    Suzuki, Satomi
    Caers, Jef
    MATHEMATICAL GEOSCIENCES, 2008, 40 (04) : 445 - 469
  • [3] A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems
    Satomi Suzuki
    Jef Caers
    Mathematical Geosciences, 2008, 40 : 445 - 469
  • [4] Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios
    Seojin Lim
    Changhyup Park
    Jaejun Kim
    Ilsik Jang
    Natural Resources Research, 2020, 29 : 1063 - 1085
  • [5] Integrated Data Assimilation and Distance-Based Model Selection with Ensemble Kalman Filter for Characterization of Uncertain Geological Scenarios
    Lim, Seojin
    Park, Changhyup
    Kim, Jaejun
    Jang, Ilsik
    NATURAL RESOURCES RESEARCH, 2020, 29 (02) : 1063 - 1085
  • [6] Deep neural network coupled with distance-based model selection for efficient history matching
    Kim, Jaejun
    Park, Changhyup
    Lee, Kyungbook
    Ahn, Seongin
    Jang, Ilsik
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 185
  • [7] A data assimilation-based method for optimizing parameterization schemes in a land surface process model
    ShengLei Zhang
    LiangFu Chen
    Lin Su
    Li Jia
    Science China Earth Sciences, 2015, 58 : 2220 - 2235
  • [8] A data assimilation-based method for optimizing parameterization schemes in a land surface process model
    Zhang ShengLei
    Chen LiangFu
    Su Lin
    Jia Li
    SCIENCE CHINA-EARTH SCIENCES, 2015, 58 (12) : 2220 - 2235
  • [9] A data assimilation-based method for optimizing parameterization schemes in a land surface process model
    ZHANG ShengLei
    CHEN LiangFu
    SU Lin
    JIA Li
    ScienceChina(EarthSciences), 2015, 58 (12) : 2220 - 2235
  • [10] Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration
    Fer, Istem
    Gardella, Anthony K.
    Shiklomanov, Alexey N.
    Campbell, Eleanor E.
    Cowdery, Elizabeth M.
    De Kauwe, Martin G.
    Desai, Ankur
    Duveneck, Matthew J.
    Fisher, Joshua B.
    Haynes, Katherine D.
    Hoffman, Forrest M.
    Johnston, Miriam R.
    Kooper, Rob
    LeBauer, David S.
    Mantooth, Joshua
    Parton, William J.
    Poulter, Benjamin
    Quaife, Tristan
    Raiho, Ann
    Schaefer, Kevin
    Serbin, Shawn P.
    Simkins, James
    Wilcox, Kevin R.
    Viskari, Toni
    Dietze, Michael C.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (01) : 13 - 26