An algorithm for the minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity

被引:0
作者
S. Gratton
E. Simon
Ph. L. Toint
机构
[1] Université de Toulouse,INP, IRIT
[2] University of Namur,naXys
来源
Mathematical Programming | 2021年 / 187卷
关键词
Evaluation complexity; Nonsmooth problems; Nonconvex optimization; Composite functions; Inexact evaluations; 90C26; 65K05; 49N30;
D O I
暂无
中图分类号
学科分类号
摘要
An adaptive regularization algorithm using inexact function and derivatives evaluations is proposed for the solution of composite nonsmooth nonconvex optimization. It is shown that this algorithm needs at most O(|log(ϵ)|ϵ-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\log (\epsilon )|\,\epsilon ^{-2})$$\end{document} evaluations of the problem’s functions and their derivatives for finding an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-approximate first-order stationary point. This complexity bound therefore generalizes that provided by Bellavia et al. (Theoretical study of an adaptive cubic regularization method with dynamic inexact Hessian information. arXiv:1808.06239, 2018) for inexact methods for smooth nonconvex problems, and is within a factor |log(ϵ)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\log (\epsilon )|$$\end{document} of the optimal bound known for smooth and nonsmooth nonconvex minimization with exact evaluations. A practically more restrictive variant of the algorithm with worst-case complexity O(|log(ϵ)|+ϵ-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\log (\epsilon )|+\epsilon ^{-2})$$\end{document} is also presented.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 46 条
[1]  
Beck A(2009)A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci. 2 183-202
[2]  
Teboulle M(2020)Adaptive regularization algorithms with inexact evaluations for nonconvex optimization SIAM J. Optim. 29 2881-2915
[3]  
Bellavia S(2017)Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models Math. Program. Ser. A 163 359-368
[4]  
Gurioli G(2019)Convergence rate analysis of a stochastic trust region method via supermartingales INFORMS J. Opt. 1 92-119
[5]  
Morini B(1993)Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information SIAM J. Sci. Stat. Comput. 14 368-388
[6]  
Toint PL(2011)On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming SIAM J. Optim. 21 1721-1739
[7]  
Birgin EG(2018)Global convergence rate analysis of unconstrained optimization methods based on probabilistic models Math. Program. Ser. A 159 337-375
[8]  
Gardenghi JL(2019)Stochastic model-based minimization of weakly convex functions SIAM J. Optim. 29 207-239
[9]  
Martínez JM(2006)Compressed sensing IEEE Trans. Inform. Theory 52 1289-1306
[10]  
Santos SA(2018)Stochastic methods for composite and weakly convex optimization problems SIAM J. Optim. 28 3229-3259