Regularity criteria for 3D Hall-MHD equations

被引:0
作者
Xuanji Jia
Yong Zhou
机构
[1] Hangzhou Normal University,School of Mathematics
[2] Wenzhou University,Department of Mathematics
[3] Zhejiang Normal University,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Hall-MHD equations; Regularity; Mixed velocity–magnetic gradient tensor; 76W05; 35Q35; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
A challenging open problem in the 3D Hall-MHD theory is to ask whether or not the global weak solutions are smooth. In this paper, we prove that a weak solution is smooth if the diagonal part of the velocity gradient tensor and the non-diagonal part of the magnetic gradient tensor satisfy Ladyzhenskaya–Prodi–Serrin-type conditions. It is physically interesting since the diagonal part of a gradient tensor is related to the deformation while the non-diagonal part is related to the rotation. Moreover, our main theorems improve significantly a criterion in Ye (Comput Math Appl 70(8):2137–2154, 2015) where all entries of the velocity gradient tensor and the magnetic gradient tensor are needed.
引用
收藏
相关论文
共 50 条
  • [31] A Regularity Criterion for the 3D MHD Equations in a Local BMO Space
    Jae-Myoung Kim
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [32] Derivation of the Hall-MHD Equations from the Navier–Stokes–Maxwell Equations
    Yi Peng
    Huaqiao Wang
    Qiuju Xu
    Journal of Nonlinear Science, 2022, 32
  • [33] Global Well-Posedness for the 3D Axisymmetric Hall-MHD System with Horizontal Dissipation
    Li, Zhouyu
    Cui, Meiying
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (04) : 794 - 817
  • [34] A Regularity Criterion for the 3D MHD Equations in a Local BMO Space
    Kim, Jae-Myoung
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [35] Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations
    Xiaomeng Chen
    Shuai Li
    Wendong Wang
    Journal of Nonlinear Science, 2022, 32
  • [36] The continuous dependence for the Hall-MHD equations with fractional magnetic diffusion
    Zhong, Dingxing
    Li, Jinlu
    Wu, Xing
    APPLICABLE ANALYSIS, 2020, 99 (02) : 285 - 292
  • [37] Singularity formation for the incompressible Hall-MHD equations without resistivity
    Chae, Dongho
    Weng, Shangkun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04): : 1009 - 1022
  • [38] Decay Rates of the Compressible Hall-MHD Equations for Quantum Plasmas
    Xiaoyu Xi
    Xueke Pu
    Boling Guo
    Acta Applicandae Mathematicae, 2020, 170 : 459 - 481
  • [39] Decay Rates of the Compressible Hall-MHD Equations for Quantum Plasmas
    Xi, Xiaoyu
    Pu, Xueke
    Guo, Boling
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 459 - 481
  • [40] Some regularity criteria for the 3D generalized Navier–Stokes equations
    Jae-Myoung Kim
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72