Regularity criteria for 3D Hall-MHD equations

被引:0
|
作者
Xuanji Jia
Yong Zhou
机构
[1] Hangzhou Normal University,School of Mathematics
[2] Wenzhou University,Department of Mathematics
[3] Zhejiang Normal University,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Hall-MHD equations; Regularity; Mixed velocity–magnetic gradient tensor; 76W05; 35Q35; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
A challenging open problem in the 3D Hall-MHD theory is to ask whether or not the global weak solutions are smooth. In this paper, we prove that a weak solution is smooth if the diagonal part of the velocity gradient tensor and the non-diagonal part of the magnetic gradient tensor satisfy Ladyzhenskaya–Prodi–Serrin-type conditions. It is physically interesting since the diagonal part of a gradient tensor is related to the deformation while the non-diagonal part is related to the rotation. Moreover, our main theorems improve significantly a criterion in Ye (Comput Math Appl 70(8):2137–2154, 2015) where all entries of the velocity gradient tensor and the magnetic gradient tensor are needed.
引用
收藏
相关论文
共 50 条
  • [1] Regularity criteria for 3D Hall-MHD equations
    Jia, Xuanji
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [2] On regularity criteria for the 3D Hall-MHD equations in terms of the velocity
    He, Fangyi
    Ahmad, Bashir
    Hayat, Tasawar
    Zhou, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 35 - 51
  • [3] New regularity criteria for the 3D Hall-MHD equations
    Alghamdi, Ahmad Mohammad
    Gala, Sadek
    Ragusa, Maria Alessandra
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 7 - 20
  • [4] Global regularity for the 3D Hall-MHD equations with low regularity axisymmetric data
    Zhouyu Li
    Pan Liu
    Monatshefte für Mathematik, 2023, 201 : 173 - 195
  • [5] Global regularity for the 3D Hall-MHD equations with low regularity axisymmetric data
    Li, Zhouyu
    Liu, Pan
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 173 - 195
  • [6] Remark on regularity criterion for the 3D Hall-MHD equations involving only the vorticity
    Wang, Wenjuan
    Ye, Zhuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [7] Remark on regularity criterion for the 3D Hall-MHD equations involving only the vorticity
    Wenjuan Wang
    Zhuan Ye
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [8] A logarithmically improved regularity criterion for the 3D Hall-MHD equations in Besov spaces with negative indices
    Ye, Zhuan
    APPLICABLE ANALYSIS, 2017, 96 (16) : 2669 - 2683
  • [9] Liouville type Theorems for the 3D stationary Hall-MHD equations
    Li, Zhouyu
    Niu, Pengcheng
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (05):
  • [10] On 3D Hall-MHD Equations with Fractional Laplacians: Global Well-Posedness
    Zhang, Huali
    Zhao, Kun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)