Deep learning based cyber bullying early detection using distributed denial of service flow

被引:0
|
作者
Muhammad Hassan Zaib
Faisal Bashir
Kashif Naseer Qureshi
Sumaira Kausar
Muhammad Rizwan
Gwanggil Jeon
机构
[1] Bahria University,Department of Computer Science
[2] Bahria University,Cyber Reconnaissance and Combat (CRC) Lab
[3] Incheon National University,Department of Embedded Systems Engineering
来源
Multimedia Systems | 2022年 / 28卷
关键词
Intrusion detection system; Deep learning; Flow-based data; Early detection; Computer security;
D O I
暂无
中图分类号
学科分类号
摘要
Cyber-bullying has been on the rise especially after the explosive widespread of various cyber-attacks. Various types of techniques have been used to tackle cyber-bullying. These techniques focused primarily on data traffic for monitoring malicious activities. This research proposes a methodology where we can detect early Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks. First, we formulate the problem in a practical scenario by comparing flow and non-flow-based datasets using Mann Whitney U statistical test. Flow and non-flow-based datasets and Artificial Neural Network (ANN) and Support Vector Machine (SVM) is used for classification. To keep original features, we use variance, correlation, ¾ quartile method to eliminate the unimportant features. The forward selection wrapper method for feature selection is used to find out the best features. To validate the proposed methodology, we take multiple DoS and DDoS single flow and validate it on 10%, 20%, 30%, 40%, and 50%. For validation, the experimental results show + 90% accuracy on the early 10% flow.
引用
收藏
页码:1905 / 1924
页数:19
相关论文
共 50 条
  • [1] Deep learning based cyber bullying early detection using distributed denial of service flow
    Zaib, Muhammad Hassan
    Bashir, Faisal
    Qureshi, Kashif Naseer
    Kausar, Sumaira
    Rizwan, Muhammad
    Jeon, Gwanggil
    MULTIMEDIA SYSTEMS, 2022, 28 (06) : 1905 - 1924
  • [2] Survey on distributed denial of service attack detection using deep learning: A review
    Jassem, Manal Dawood
    Abdulrahman, Amer Abdulmajeed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 753 - 762
  • [3] Distributed Denial of Service Attack Detection in Network Traffic Using Deep Learning Algorithm
    Ramzan, Mahrukh
    Shoaib, Muhammad
    Altaf, Ayesha
    Arshad, Shazia
    Iqbal, Faiza
    Castilla, Angel Kuc
    Ashraf, Imran
    SENSORS, 2023, 23 (20)
  • [4] Distributed Denial of Service Attack Detection for the Internet of Things Using Hybrid Deep Learning Model
    Ahmim, Ahmed
    Maazouzi, Faiz
    Ahmim, Marwa
    Namane, Sarra
    Dhaou, Imed Ben
    IEEE ACCESS, 2023, 11 : 119862 - 119875
  • [5] Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0
    Ferrag, Mohamed Amine
    Shu, Lei
    Djallel, Hamouda
    Choo, Kim-Kwang Raymond
    ELECTRONICS, 2021, 10 (11)
  • [6] A distributed framework for distributed denial-of-service attack detection in internet of things environments using deep learning
    Silas W.A.
    Nderu L.
    Ndirangu D.
    International Journal of Web Engineering and Technology, 2024, 19 (01) : 67 - 87
  • [7] An Efficient Hybrid Deep Learning Model for Denial of Service Detection in Cyber Physical Systems
    Sharma, Ankita
    Rani, Shalli
    Shah, Syed Hassan
    Sharma, Rohit
    Yu, Feng
    Hassan, Mohammad Mehedi
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2419 - 2428
  • [8] Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model
    Aldhyani, Theyazn H. H.
    Alkahtani, Hasan
    MATHEMATICS, 2023, 11 (01)
  • [9] A Comprehensive Review of Deep Learning Techniques for the Detection of (Distributed ) Denial of Service Attacks
    Malliga, S.
    Nandhini, P. S.
    Kogilavani, S. V.
    INFORMATION TECHNOLOGY AND CONTROL, 2022, 51 (01): : 180 - 215
  • [10] Distributed denial of service attack detection using autoencoder and deep neural networks
    Catak, Ferhat Ozgur
    Mustacoglu, Ahmet Fatih
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (03) : 3969 - 3979