Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber

被引:0
|
作者
Shu-Liang Jia
Yi-Tian Gao
Chen Zhao
Zhong-Zhou Lan
Yu-Jie Feng
机构
[1] Beijing University of Aeronautics and Astronautics,Ministry
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Under investigation in this paper is a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Through the Darboux transformation (DT) and generalized DT, we obtain the multi-soliton solutions, breathers and rogue waves. Choosing different values of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x), which are the coefficients of the third-, fourth-, fifth- and sixth-order dispersions, respectively, we investigate their effects on those solutions, where x is the scaled propagation variable. When α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are chosen as the linear, parabolic and periodic functions, we obtain the parabolic, cubic and quasi-periodic solitons, respectively. Head-on and overtaking interactions between the two solitons are presented, and the interactions are elastic. Besides, with certain values of the spectral parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda$\end{document}, a shock region between the two solitons appears, and the interaction is inelastic. Interactions between two kinds of the breathers are also studied, and we find that the interaction regions are similar to those of the second-order rogue waves. Rogue waves are split into some first-order rogue waves when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are the periodic or odd-numbered functions.
引用
收藏
相关论文
共 50 条
  • [31] Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber
    Xi-Hu Wu
    Yi-Tian Gao
    Xin Yu
    Liu-Qing Li
    Cui-Cui Ding
    Nonlinear Dynamics, 2023, 111 : 5641 - 5653
  • [32] Interactions among solitons for a fifth-order variable coefficient nonlinear Schrödinger equation
    Suzhi Liu
    Qin Zhou
    Anjan Biswas
    Abdullah Kamis Alzahrani
    Wenjun Liu
    Nonlinear Dynamics, 2020, 100 : 2797 - 2805
  • [33] Dark solitons for a variable-coefficient higher-order nonlinear Schrodinger equation in the inhomogeneous optical fiber
    Sun, Yan
    Tian, Bo
    Wu, Xiao-Yu
    Liu, Lei
    Yuan, Yu-Qiang
    MODERN PHYSICS LETTERS B, 2017, 31 (12):
  • [34] Bilinear forms and solitons for a generalized sixth-order nonlinear Schrodinger equation in an optical fiber
    Su, Jing-Jing
    Gao, Yi-Tian
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [35] Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrodinger equation in the inhomogeneous plasmas
    Wang, Lei
    Li, Min
    Qi, Feng-Hua
    Xu, Tao
    PHYSICS OF PLASMAS, 2015, 22 (03)
  • [36] Breathers and rogue waves for an eighth-order nonlinear Schrodinger equation in an optical fiber
    Hu, Wen-Qiang
    Gao, Yi-Tian
    Zhao, Chen
    Lan, Zhong-Zhou
    MODERN PHYSICS LETTERS B, 2017, 31 (05):
  • [37] On complex wave solutions for the variable-coefficient fourth-order nonlinear Schr?dinger system in an inhomogeneous optical fiber
    Wang, Lingyu
    Gao, Ben
    OPTIK, 2023, 279
  • [38] Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrodinger equations in an inhomogeneous optical fiber
    Du, Zhong
    Tian, Bo
    Chai, Han-Peng
    Sun, Yan
    Zhao, Xue-Hui
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 90 - 98
  • [39] Manipulating rogue waves, breathers and solitons in several non-integrable nonlinear Schrödinger equations
    Fei-feng Li
    Zhong-yin Li
    Hui-jun Li
    The European Physical Journal D, 2019, 73
  • [40] Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects
    Liu-Ying Cai
    Xin Wang
    Lei Wang
    Min Li
    Yong Liu
    Yu-Ying Shi
    Nonlinear Dynamics, 2017, 90 : 2221 - 2230