Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber

被引:0
|
作者
Shu-Liang Jia
Yi-Tian Gao
Chen Zhao
Zhong-Zhou Lan
Yu-Jie Feng
机构
[1] Beijing University of Aeronautics and Astronautics,Ministry
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Under investigation in this paper is a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Through the Darboux transformation (DT) and generalized DT, we obtain the multi-soliton solutions, breathers and rogue waves. Choosing different values of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x), which are the coefficients of the third-, fourth-, fifth- and sixth-order dispersions, respectively, we investigate their effects on those solutions, where x is the scaled propagation variable. When α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are chosen as the linear, parabolic and periodic functions, we obtain the parabolic, cubic and quasi-periodic solitons, respectively. Head-on and overtaking interactions between the two solitons are presented, and the interactions are elastic. Besides, with certain values of the spectral parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda$\end{document}, a shock region between the two solitons appears, and the interaction is inelastic. Interactions between two kinds of the breathers are also studied, and we find that the interaction regions are similar to those of the second-order rogue waves. Rogue waves are split into some first-order rogue waves when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document}(x), β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta$\end{document}(x), γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma$\end{document}(x) and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}(x) are the periodic or odd-numbered functions.
引用
收藏
相关论文
共 50 条
  • [1] Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrodinger equation in an ocean or optical fiber
    Jia, Shu-Liang
    Gao, Yi-Tian
    Zhao, Chen
    Lan, Zhong-Zhou
    Feng, Yu-Jie
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [2] Dynamical analysis of solitons, breathers and periodic rogue waves for the variable-coefficient fourth-order nonlinear Schrödinger equation
    Song, Ni
    Liu, Yating
    Wen, Zhuyan
    Ma, Wenxiu
    NONLINEAR DYNAMICS, 2024, 112 (24) : 22245 - 22256
  • [3] Nth order generalized Darboux transformation and solitons, breathers and rogue waves in a variable-coefficient coupled nonlinear Schrödinger equation
    N. Song
    R. Liu
    M. M. Guo
    W. X. Ma
    Nonlinear Dynamics, 2023, 111 : 19347 - 19357
  • [4] Breathers and rogue waves for an eighth-order variable-coefficient nonlinear Schrodinger equation in an ocean or optical fiber
    Jia, Shu-Liang
    Gao, Yi-Tian
    Zhao, Chen
    Yang, Jin-Wei
    Feng, Yu-Jie
    WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (03) : 544 - 561
  • [5] Rogue waves of the sixth-order nonlinear Schr?dinger equation on a periodic background
    Wei Shi
    Zhaqilao
    Communications in Theoretical Physics, 2022, 74 (05) : 5 - 13
  • [6] Solitons for a generalized sixth-order variable-coefficient nonlinear Schrodinger equation for the attosecond pulses in an optical fiber
    Su, Jing-Jing
    Gao, Yi-Tian
    Jia, Shu-Liang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 50 : 128 - 141
  • [7] Nonautonomous solitons and breathers for the coupled variable-coefficient derivative nonlinear Schrödinger equation
    Wu, Sen
    Ding, Cui Cui
    Li, Xian
    NONLINEAR DYNAMICS, 2024, : 10277 - 10290
  • [8] Bilinear forms and solitons for a generalized sixth-order nonlinear Schrödinger equation in an optical fiber
    Jing-Jing Su
    Yi-Tian Gao
    The European Physical Journal Plus, 132
  • [9] Solitons, breathers and periodic rogue waves for the variable-coefficient seventh-order nonlinear Schrodinger equation
    Jiang, Dongzhu
    Zhaqilao
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [10] Modulation instability and rogue waves for the sixth-order nonlinear Schrödinger equation with variable coefficients on a periodic background
    Wei Shi
    Nonlinear Dynamics, 2022, 109 : 2979 - 2995