A Geometrical Framework for f-Statistics

被引:0
作者
Gonzalo Oteo-García
José-Angel Oteo
机构
[1] University of Huddersfield,Department of Biological and Geographical Sciences, School of Applied Sciences
[2] Universidad de Valencia,Departamento de Física Teórica and Institute for Integrative Systems Biology (I2SysBio)
来源
Bulletin of Mathematical Biology | 2021年 / 83卷
关键词
-statistics; Population admixture; Genetic drift; Fixation index ; Coalescence times; 92D15; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
A detailed derivation of the f-statistics formalism is made from a geometrical framework. It is shown that the f-statistics appear when a genetic distance matrix is constrained to describe a four population phylogenetic tree. The choice of genetic metric is crucial and plays an outstanding role as regards the tree-like-ness criterion. The case of lack of treeness is interpreted in the formalism as the presence of population admixture. In this respect, four formulas are given to estimate the admixture proportions. One of them is the so-called f4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_4$$\end{document}-ratio estimate and we show that a second one is related to a known result developed in terms of the fixation index FST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{\mathrm{ST}}$$\end{document}. An illustrative numerical simulation of admixture proportion estimates is included. Relationships of the formalism with coalescence times and pairwise sequence differences are also provided.
引用
收藏
相关论文
共 55 条
  • [1] Cavalli-Sforza LL(1966)Population structure and human evolution Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character 164 362-379
  • [2] Cavalli-Sforza LL(1975)Analysis of evolution: evolutionary rates, independence and treeness Theor Popul Biol 8 127-165
  • [3] Piazza A(2017)Admixture and ancestry inference from ancient and modern samples through measures of population genetic drift Hum Biol 89 21-93
  • [4] Harris AM(2012)Ancient admixture in human history Genetics 192 1065-501
  • [5] DeGiorgio M(2016)Admixture, population structure, and F-statistics Genetics 202 1485-91
  • [6] Patterson N(2014)Upper Palaeolithic Siberian genome reveals dual ancestry of native Americans Nature 505 87-494
  • [7] Moorjani P(2009)Reconstructing Indian population history Nature 461 489-310
  • [8] Luo Y(1969)A note on the tree realizability of a distance matrix J Combin Theory 6 303-66
  • [9] Mallick S(2019)General theory for stochastic admixture graphs and F-statistics Theor Popul Biol 125 56-354
  • [10] Rohland N(1951)The genetical structure of populations Ann Eugen 15 323-undefined