Development and Challenges of Electrode Ionomers Used in the Catalyst Layer of Proton-Exchange Membrane Fuel Cells: A Review

被引:0
|
作者
Qingnuan Zhang
Bo Wang
机构
[1] Beijing Institute of Technology,School of Chemistry and Chemical Engineering
来源
Transactions of Tianjin University | 2023年 / 29卷
关键词
Electrode ionomer; Proton conduction; Oxygen transport resistance; Catalyst layer; Proton-exchange membrane fuel cell;
D O I
暂无
中图分类号
学科分类号
摘要
The electrode ionomer plays a crucial role in the catalyst layer (CL) of a proton-exchange membrane fuel cell (PEMFC) and is closely associated with the proton conduction and gas transport properties, structural stability, and water management capability. In this review, we discuss the CL structural characteristics and highlight the latest advancements in ionomer material research. Additionally, we comprehensively introduce the design concepts and exceptional performances of porous electrode ionomers, elaborate on their structural properties and functions within the fuel cell CL, and investigate their effect on the CL microstructure and performance. Finally, we present a prospective evaluation of the developments in the electrode ionomer for fabricating CL, offering valuable insights for designing and synthesizing more efficient electrode ionomer materials. By addressing these facets, this review contributes to a comprehensive understanding of the role and potential of electrode ionomers for enhancing PEMFC performance.
引用
收藏
页码:360 / 386
页数:26
相关论文
共 50 条
  • [21] Cold-start icing characteristics of proton-exchange membrane fuel cells
    Li, Linjun
    Wang, Shixue
    Yue, Like
    Wang, Guozhuo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 12033 - 12042
  • [22] Independent regulation of ionomer distribution in catalyst layer for proton exchange membrane fuel cell
    Ren, Hong
    Meng, Xiangchao
    Lin, Yongli
    Shao, Zhigang
    ELECTROCHIMICA ACTA, 2023, 462
  • [23] Effect of the silica particle diameter on the morphology of catalyst layer in proton exchange membrane fuel cells
    Jang, Eun Kwang
    Lee, Sang Bin
    Kim, Tae-Hyun
    Yi, Sung-Chul
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2017, 18 (02): : 141 - 145
  • [24] Recent advances in the anode catalyst layer for proton exchange membrane fuel cells
    Li, Zheng
    Wang, Yameng
    Mu, Yongbiao
    Wu, Buke
    Jiang, Yuting
    Zeng, Lin
    Zhao, Tianshou
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 176
  • [25] A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation
    Park, Jaeman
    Oh, Hwanyeong
    Ha, Taehun
    Lee, Yoo Il
    Min, Kyoungdoug
    APPLIED ENERGY, 2015, 155 : 866 - 880
  • [26] Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review
    Dafalla, Ahmed Mohmed
    Wei, Lin
    Habte, Bereket Tsegai
    Guo, Jian
    Jiang, Fangming
    ENERGIES, 2022, 15 (23)
  • [27] Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review
    Guo, Hui
    Chen, Lubing
    Ismail, Sara Adeeba
    Jiang, Lulu
    Guo, Shihang
    Gu, Jie
    Zhang, Xiaorong
    Li, Yifeng
    Zhu, Yuwen
    Zhang, Zihan
    Han, Donglin
    MATERIALS, 2022, 15 (24)
  • [28] Model-based diagnosis of proton-exchange membrane fuel cell cathode catalyst layer microstructure degradation
    Heidari, Hamed
    Esmaili, Qadir
    Ranjbar, Ali Akbar
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 24408 - 24423
  • [29] Development of proton-exchange membrane fuel cell with ionic liquid technology
    Khoo, Kuan Shiong
    Chia, Wen Yi
    Wang, Kexin
    Chang, Chih-Kai
    Leong, Hui Yi
    Bin Maaris, Muhammad Nasrulhazim
    Show, Pau Loke
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 793
  • [30] An investigation of convective transport in micro proton-exchange membrane fuel cells
    Rawool, A. S.
    Mitra, Sushanta K.
    Pharoah, Jon G.
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 985 - 991