Reducing Subspaces of Analytic Toeplitz Operators on the Bergman Space of the Annulus

被引:0
作者
Anjian Xu
机构
[1] Chongqing University of Technology,College of Mathematics and Statistics
来源
Complex Analysis and Operator Theory | 2019年 / 13卷
关键词
Toeplitz operator; Bergman space; Blaschke product; Annulus; Primary 47B35; 46B32; Secondary 05A38; 15A15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}_{r}$$\end{document} be the annulus {z∣|z|<r<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z\mid \,|z|<r<1\}$$\end{document} in the complex plane, La2(Ar)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{a}^{2}(\mathbb {A}_{r})$$\end{document} be the Bergman space on Ar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}_{r}$$\end{document}, B be a finite Blaschke product B(z)=eiθ∏i=1Nz-αi1-αi¯z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(z)=e^{i\theta }\prod \nolimits _{i=1}^{N}\frac{z-\alpha _{i}}{1-\overline{\alpha _{i}}z}$$\end{document} with |αi|<r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\alpha _{i}|<r$$\end{document} for 1≤i≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le N$$\end{document}. In this case, local inverses of B on Ar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}_{r}$$\end{document} consist of a cyclic group with order N. It is shown that there is an one-to-one correspondence between a minimal reducing subspace of the Toeplitz operator TB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{B}$$\end{document} on La2(Ar)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{a}^{2}(\mathbb {A}_{r})$$\end{document} and a character of the cyclic group, reducing subspaces of Toeplitz operators are studied from an algebraic point of view and Douglas and Kim’s result is generalized.
引用
收藏
页码:4195 / 4206
页数:11
相关论文
共 31 条
[1]  
Abrahamse MB(1976)A class of subnormal operators related to multiply-connected domains Adv. Math. 19 106-148
[2]  
Douglas RG(2000)The group of the invariants of a finite Blaschke product Complex Var. Theory Appl. 42 193-206
[3]  
Cassier G(2009)Operator theory and complex geometry Extr. Math. 24 135-165
[4]  
Chalendar I(2016)Generalized bundle shift with application to multiplication operator on the Bergman space J. Oper. Theory 75 3-19
[5]  
Douglas RG(2011)Reducing subspaces on the annulus Integral Equ. Oper. Theory 70 1-15
[6]  
Douglas RG(2012)Reducing subspaces for analytic multipliers of the Bergman space J. Funct. Anal. 263 1744-1765
[7]  
Keshari DK(2011)Multiplication operators on the Bergman space via analytic continuation Adv. Math. 226 541-583
[8]  
Xu A(2011)On multiplication operators on the Bergman space: similarity, unitary equivalence and reducing subspaces J. Oper. Theory 65 355-378
[9]  
Douglas RG(2009)Multiplication operators on the Bergman space via the Hardy space of the bidisk J. Reine Angew. Math. 628 129-168
[10]  
Kim Y-S(1982)Analytic functions and hypergroups of function Pairs Indiana Univ. Math. J. 31 843-884