Stability of general multi-Euler-Lagrange quadratic functional equations in non-Archimedean fuzzy normed spaces

被引:0
作者
Tian Zhou Xu
John Michael Rassias
机构
[1] Beijing Institute of Technology,School of Mathematics
[2] National and Capodistrian University of Athens,Pedagogical Department E.E., Section of Mathematics and Informatics
来源
Advances in Difference Equations | / 2012卷
关键词
stability of general multi-Euler-Lagrange quadratic functional equation; direct method; fixed point method; non-Archimedean fuzzy normed space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the generalized Hyers-Ulam stability of the system defining general Euler-Lagrange quadratic mappings in non-Archimedean fuzzy normed spaces over a field with valuation using the direct and the fixed point methods.
引用
收藏
相关论文
共 40 条
  • [1] Agarwal RP(2003)Stability of functional equations in single variable J. Math. Anal. Appl 288 852-869
  • [2] Xu B(1950)On the stability of the linear transformation in Banach spaces J. Math. Soc. Jpn 2 64-66
  • [3] Zhang W(2010)Functional inequalities in non-Archimedean Banach spaces Appl. Math. Lett 23 1238-1242
  • [4] Aoki T(2011)Lattictic non-Archimedean random stability of ACQ functional equation Adv. Differ. Equ 2011 31-3426
  • [5] Cho YJ(2011)On the generalized Hyers-Ulam stability of multi-quadratic mappings Comput. Math. Appl 62 3418-309
  • [6] Park C(1968)A fixed point theorem of the alternative for the contractions on generalized complete metric space Bull. Am. Math. Soc 74 305-436
  • [7] Saadati R(1994)A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings J. Math. Anal. Appl 184 431-381
  • [8] Cho YJ(2002)Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces Kybernetika 38 363-224
  • [9] Saadati R(1941)On the stability of the linear functional equation Proc. Natl. Acad. Sci. USA 27 222-190
  • [10] Ciepliński K(2012)Stability of the Jensen equation in Adv. Differ. Equ 2012 17-2212