Weighted ℓp(0<p≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}(0<p\le 1)$$\end{document} minimization with non-uniform weights for sparse recovery under partial support information

被引:0
作者
Manxia Cao
Wei Huang
Shuaijun Lv
机构
[1] Hefei University of Technology,School of Mathematics
关键词
Compressed sensing; Weighted ; minimization; Restricted isometry property; 90C26; 41A29; 65T99;
D O I
10.1007/s40314-022-01777-7
中图分类号
学科分类号
摘要
In this paper, we study the recovery conditions and recovery guarantees of the weighted ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} minimization method when multiple different weights are allowed. It shows that the sufficient recovery condition of the weighted ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} minimization method with non-uniform weights is weaker than that of the weighted ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} minimization method with single weight when p∈(0,0.8]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,0.8]$$\end{document}. And compared with the weighted ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} minimization method with single weight, the weighted ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{p}$$\end{document} minimization method with non-uniform weights provides a better upper limit for the recovery error in the noisy case. We demonstrate our results with numerical experiments on synthetic signals. Moreover, we apply the results to the case of the recovery of sparse signals in terms of redundant dictionary.
引用
收藏
相关论文
共 48 条
  • [1] Cai T(2010)New bounds for restricted isometry constants IEEE Trans Inf Theory 56 4388-4394
  • [2] Wang L(2005)Decoding by linear programming IEEE Trans Inf Theory 51 4203-4215
  • [3] Xu G(2006)Stable signal recovery from incomplete and inaccurate measurements Commun Pure Appl Math 59 1207-1223
  • [4] Candes E(2011)Compressed sensing with coherent and redundant dictionaries Appl Comput Harm Anal 31 59-73
  • [5] Tao T(2018)Recovery of signals under the high order RIP condition via prior support information Signal Process 153 83-94
  • [6] Candes E(2012)Recoverying compressively sampled signals using partial support information IEEE Trans Inf Theory 58 1122-1134
  • [7] Romberg J(2020)New RIP bounds for recovery of sparse signals with partial support information via weighted IEEE Trans Inf Theory 66 1-2
  • [8] Tao T(2010)-minimization Signal Process 90 3308-3312
  • [9] Candes E(2018)A short note compressed sensing with partially known signal support IEEE Trans Image Process 27 2022-2037
  • [10] Eldar Y(2019)Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker IEEE Trans Ind Electron 66 9887-9897