On the on-line maintenance scheduling problem

被引:0
作者
Fahimeh Shamsaei
Claudio Telha
Mathieu Van Vyve
机构
[1] Université Catholique de Louvain,Center for Operations Research and Econometrics
来源
Optimization Letters | 2018年 / 12卷
关键词
Maintenance scheduling; Competitive analysis; Randomized algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
A machine instantly serves requests but needs to undergo maintenance after serving a maximum of L requests. We want to maximize the number of requests served. In the on-line version, we prove that serving L requests before placing a maintenance is 0.5-competitive and is best possible for deterministic algorithms. We describe a 0.585-competitive randomized algorithm and show an upper bound of 2L/(3L-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2L/(3L-1)$$\end{document}. We also analyze the empirical performance of various on-line algorithms on specific arrival distributions.
引用
收藏
页码:387 / 397
页数:10
相关论文
共 12 条
[1]  
Albers S(1999)Better bounds for online scheduling SIAM J. Comput. 29 459-473
[2]  
Ball MO(2009)Toward robust revenue management: competitive analysis of online booking Oper. Res. 57 950-963
[3]  
Queyranne M(2002)Robust optimization-methodology and applications Math. Program. 92 453-480
[4]  
Ben-Tal A(2001)Approximation techniques for average completion time scheduling SIAM J. Comput. 31 146-166
[5]  
Nemirovski A(2008)On the competitive ratio for online facility location Algorithmica 50 1-57
[6]  
Chekuri C(2009)Online scheduling with general machine cost functions Discrete Appl. Math. 157 2070-2077
[7]  
Motwani R(2002)On the online bin packing problem J. ACM 49 640-671
[8]  
Natarajan B(undefined)undefined undefined undefined undefined-undefined
[9]  
Stein C(undefined)undefined undefined undefined undefined-undefined
[10]  
Fotakis D(undefined)undefined undefined undefined undefined-undefined