Virtual element methods for weakly damped wave equations on polygonal meshes

被引:0
作者
Gouranga Pradhan
Jogen Dutta
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Guwahati,Department of Mathematics
[3] North Guwahati College,undefined
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Virtual element method; Weakly damped wave equations; Polygonal meshes; Optimal error estimate; 65N30; 65N15; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a virtual element method for weakly damped wave equations on polygonal meshes. Very general polygonal meshes are used for the spatial discretization. In both L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} norm and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document} semi-norm, optimal order of convergence is obtained for the spatially discrete approximation. We employ the Crank–Nicolson temporal discretization scheme for the fully discrete problem and derive the convergence analysis. Numerical experiments are illustrated to confirm our theoretical findings.
引用
收藏
相关论文
共 60 条
  • [11] Beirão da Veiga L(2022)A virtual element method for the wave equation on curved edges in two dimensions J Sci Comput 90 1-25
  • [12] Brezzi F(2020)Convergence of finite element methods for hyperbolic heat conduction model with an interface Comput Math Appl 79 3139-3159
  • [13] Cangiani A(2020)Finite element methods for non-Fourier thermal wave model of bio heat transfer with an interface J Appl Math Comput 62 701-724
  • [14] Manzini G(2018)Virtual element method for second-order elliptic eigenvalue problems IMA J Numer Anal 38 2026-2054
  • [15] Marini LD(2015)A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment J Therm Biol 49 98-105
  • [16] Russo A(2012)Investigation on the bio-heat transfer with the dual-phase-lag effect Int J Therm Sci 58 29-35
  • [17] Beirão da Veiga L(2013)Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation Int J Heat Mass Transf 60 591-597
  • [18] Brezzi F(1986)Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley’s wave attenuation in acoustical well logging Int J Eng Sci 24 1553-1570
  • [19] Marini LD(2017)Virtual element methods for hyperbolic problems on polygonal meshes Comput Math Appl 74 882-898
  • [20] Russo A(2015)Virtual element methods for parabolic problems on polygonal meshes Numer Methods Partial Differ Equ 31 2110-2134