Virtual element methods for weakly damped wave equations on polygonal meshes

被引:0
作者
Gouranga Pradhan
Jogen Dutta
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Guwahati,Department of Mathematics
[3] North Guwahati College,undefined
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Virtual element method; Weakly damped wave equations; Polygonal meshes; Optimal error estimate; 65N30; 65N15; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a virtual element method for weakly damped wave equations on polygonal meshes. Very general polygonal meshes are used for the spatial discretization. In both L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} norm and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document} semi-norm, optimal order of convergence is obtained for the spatially discrete approximation. We employ the Crank–Nicolson temporal discretization scheme for the fully discrete problem and derive the convergence analysis. Numerical experiments are illustrated to confirm our theoretical findings.
引用
收藏
相关论文
共 60 条
  • [1] Ahmad B(2013)Equivalent projectors for virtual element methods Comput Math Appl 66 376-391
  • [2] Alsaedi A(2021)The arbitrary-order virtual element method for linear elastodynamics models: convergence, stability and dispersion-dissipation analysis Int J Numer Methods Eng 122 934-971
  • [3] Brezzi F(2013)Basic principles of virtual element methods Math Models Methods Appl Sci 23 199-214
  • [4] Marini LD(2014)The hitchhiker’s guide to the virtual element method Math Models Methods Appl Sci 24 1541-1573
  • [5] Russo A(2016)Virtual element method for general second-order elliptic problems on polygonal meshes Math Models Methods Appl Sci 26 729-750
  • [6] Antonietti PF(1966)Heat transfer in biological systems Int Rev Gen Exp Zool 2 269-344
  • [7] Manzini G(1975)Theory, measurement, and application of thermal properties of biomaterials Annu Rev Biophys Bioeng 4 43-80
  • [8] Mazzieri I(2017)Conforming and nonconforming virtual element methods for elliptic problems IMA J Numer Anal 37 1317-1354
  • [9] Mourad HM(1958)Sur une forme de l’equation de la chaleur eliminant la paradoxe d’une propagation instantantee Compt. Rendu 247 431-433
  • [10] Verani M(2018)Some error analysis on virtual element methods Calcolo 55 1-23