Spherically symmetric static solutions in a nonlocal infrared modification of General Relativity

被引:0
作者
Alex Kehagias
Michele Maggiore
机构
[1] Département de Physique Théorique and Center for Astroparticle Physics,Physics Division
[2] National Technical University of Athens,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
Cosmology of Theories beyond the SM; Classical Theories of Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss static spherically symmetric solutions in a recently proposed nonlocal infrared modification of Einstein equations induced by a term m2gμν □−1R, where m is a mass scale. We find that, contrary to what happens in usual theories of massive gravity, in this nonlocal theory there is no vDVZ discontinuity and classical non-linearities do not become large below a Vainshtein radius parametrically larger than the Schwarzschild radius rS . Rather on the contrary, in the regime r ≪ m−1 the corrections to the metric generated by a static body in GR are of the form 1 + O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(m2r2) and become smaller and smaller toward smaller values of r. The modification to the GR solutions only show up at r ≳ m−1. For m = O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(H0), as required for having interesting cosmological consequences, the nonlocal theory therefore recovers all successes of GR at the solar system and lab scales.
引用
收藏
相关论文
共 147 条
[1]  
Fierz M(1939)On relativistic wave equations for particles of arbitrary spin in an electromagnetic field Proc. Roy. Soc. Lond. A 173 211-undefined
[2]  
Pauli W(1972)Can gravitation have a finite range? Phys. Rev. D 6 3368-undefined
[3]  
Boulware DG(2010)Generalization of the Fierz-Pauli Action Phys. Rev. D 82 044020-undefined
[4]  
Deser S(2011)Resummation of Massive Gravity Phys. Rev. Lett. 106 231101-undefined
[5]  
de Rham C(2012)Ghost free Massive Gravity in the Stúckelberg language Phys. Lett. B 711 190-undefined
[6]  
Gabadadze G(2012)Resolving the Ghost Problem in non-Linear Massive Gravity Phys. Rev. Lett. 108 041101-undefined
[7]  
de Rham C(2012)Ghost-free Massive Gravity with a General Reference Metric JHEP 02 026-undefined
[8]  
Gabadadze G(2012)Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity JHEP 04 123-undefined
[9]  
Tolley AJ(2012)Theoretical Aspects of Massive Gravity Rev. Mod. Phys. 84 671-undefined
[10]  
de Rham C(2006)Null energy condition and superluminal propagation JHEP 03 025-undefined