Selective laser melting of copper using ultrashort laser pulses

被引:0
作者
Lisa Kaden
Gabor Matthäus
Tobias Ullsperger
Hannes Engelhardt
Markus Rettenmayr
Andreas Tünnermann
Stefan Nolte
机构
[1] Friedrich-Schiller-Universität Jena,Institute of Applied Physics, Abbe Center of Photonics
[2] Friedrich-Schiller-Universität Jena,Otto Schott Institute of Materials Research
[3] Fraunhofer Institute for Applied Optics and Precision Engineering,undefined
来源
Applied Physics A | 2017年 / 123卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Within the field of laser-assisted additive manufacturing, the application of ultrashort pulse lasers for selective laser melting came into focus recently. In contrast to conventional lasers, these systems provide extremely high peak power at ultrashort interaction times and offer the potential to control the thermal impact at the vicinity of the processed region by tailoring the pulse repetition rate. Consequently, materials with extremely high melting points such as tungsten or special composites such as AlSi40 can be processed. In this paper, we present the selective laser melting of copper using 500 fs laser pulses at MHz repetition rates emitted at a center wavelength of about 1030 nm. To identify an appropriate processing window, a detailed parameter study was performed. We demonstrate the fabrication of bulk copper parts as well as the realization of thin-wall structures featuring thicknesses below 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\upmu }$$\end{document}m. With respect to the extraordinary high thermal conductivity of copper which in general prevents the additive manufacturing of elements with micrometer resolution, this work demonstrates the potential for sophisticated copper products that can be applied in a wide field of applications extending from microelectronics functionality to complex cooling structures.
引用
收藏
相关论文
共 44 条
[1]  
Kruth J(2004)W. ONeill J. Mater. Process. Technol. 149 616-undefined
[2]  
Froyen L(2006)undefined Int. J. Mach. Tools Manuf. 46 1459-undefined
[3]  
Vaerenbergh JV(2014)undefined Appl. Phys. A 118 37-undefined
[4]  
Mercelis P(2003)undefined Rapid Prototyp. J. 9 334-undefined
[5]  
Rombouts M(2015)undefined Appl. Phys. A 119 1075-undefined
[6]  
Lauwers B(2013)undefined Opt. Express 21 15452-undefined
[7]  
Santos EC(2005)undefined Opt. Express 13 4708-undefined
[8]  
Shiomi M(2004)undefined Microelectron. Reliab. 44 303-undefined
[9]  
Osakada K(2006)undefined Powder Metall. 49 258-undefined
[10]  
Laoui T(2013)undefined Nature Photonics 7 861-undefined