Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging

被引:0
作者
Saket Navlakha
Parvez Ahammad
Eugene W Myers
机构
[1] Carnegie Mellon University,School of Computer Science, Machine Learning Department
[2] Howard Hughes Medical Institute,undefined
[3] Janelia Farm Research Campus,undefined
[4] Max Planck Institute of Molecular Cell Biology and Genetics,undefined
来源
BMC Bioinformatics | / 14卷
关键词
Image segmentation; Superpixels; Salient watershed; Region merging; Electron microscopy; Unsupervised learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 59 条
[1]  
Peng H(2008)Bioimage informatics: a new area of engineering biology Bioinformatics 24 1827-1836
[2]  
Turaga SC(2010)Convolutional networks can learn to generate affinity graphs for image segmentation Neural Comput 22 511-538
[3]  
Murray JF(2000)Normalized cuts and image segmentation IEEE T Pattern Anal Mach Intell 22 888-905
[4]  
Jain V(2002)Mean shift: a robust approach toward feature space analysis IEEE Trans Pattern Anal Mach Intell 24 603-619
[5]  
Roth F(1991)Watersheds in digital spaces: an efficient algorithm based on immersion simulations IEEE Trans Pattern Anal Mach Intell 13 583-598
[6]  
Helmstaedter M(2009)TurboPixels: fast superpixels using geometric flows IEEE Trans Pattern Anal Mach Intell 31 2290-2297
[7]  
Briggman K(2012)SLIC Superpixels compared to state-of-the-art superpixel methods IEEE Trans Pattern Anal Mach Intell 34 2274-2282
[8]  
Denk W(1986)A computational approach to edge detection IEEE T Pattern Anal Mach Intell 8 679-698
[9]  
Seung HS(2004)Learning to detect natural image boundaries using local brightness, color, and texture cues IEEE T Pattern Anal Mach Intell 26 530-549
[10]  
Shi J(2011)Experimental evaluation of support vector machine-based and correla tion-based approaches to automatic particle selection J Struct Biol 175 319-328